CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
Types of Finite Automata

- **Deterministic Finite Automata (DFA)**
 - Exactly one sequence of steps for each string
 - All examples so far

- **Nondeterministic Finite Automata (NFA)**
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol.

- DFAs allow only one transition per symbol.
 - I.e., transition function must be a valid function.
 - DFA is a special case of NFA.
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for \((a\mid b)^{*}abb\)
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states S0, S1
- **ababa**
 - Has paths to S0, S1
 - Need to use \(\epsilon\)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
NFA Acceptance Algorithm Sketch

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label
 - ϵ-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - $S1$
 - $S2$
 - $S3$
A deterministic finite automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where

- Σ is an alphabet
- Q is a nonempty set of states
- $q_0 \in Q$ is the start state
- $F \subseteq Q$ is the set of final states
- $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions

What's this definition saying that δ is?

A DFA accepts s if it stops at a final state on s.
Formal Definition: Example

• $\Sigma = \{0, 1\}$
• $Q = \{S0, S1\}$
• $q_0 = S0$
• $F = \{S1\}$
• δ

<table>
<thead>
<tr>
<th>input state</th>
<th>symbol</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>S0</td>
<td>S0</td>
<td>S0</td>
</tr>
<tr>
<td>S1</td>
<td>S0</td>
<td>S0</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as $\{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}$
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma, Q, q_0, F\) as with DFAs
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{(S1,a,S1), (S1,a,S2), (S2,\varepsilon,S3)\}\)

- An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA’s start state to a final state
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages!
Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall F = set of final states

- Will define $<A>$ for base cases: $\sigma, \epsilon, \emptyset$
 - Where σ is a symbol in Σ

- And for inductive cases: $AB, A|B, A^*$
Reducing Regular Expressions to NFAs

Base case: σ

$\langle \sigma \rangle = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\}$)
Reduction

- **Base case: \(\varepsilon \)**
 \[
 \langle \varepsilon \rangle = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)
 \]

- **Base case: \(\emptyset \)**
 \[
 \langle \emptyset \rangle = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)
 \]
Reduction: Concatenation

- Induction: AB

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Concatenation

Induction: AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})$
Reduction: Union

Induction: \(A|B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
Reduction: Union

Induction: $A | B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\})$
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- **Induction: A^***

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle A^* \rangle = (\Sigma_A, Q_A \cup \{S0,S1\}, S0, \{S1\},$
 $\delta_A \cup \{(f_A,\varepsilon,S1), (S0,\varepsilon,q_A), (S0,\varepsilon,S1), (S1,\varepsilon,S0)\})$
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
RE \rightarrow NFA

Draw NFAs for the regular expression (0|1)*110*
Draw NFAs for the regular expression \((ab^*c|d^*a|ab)d\)
Reduction Complexity

- Given a regular expression A of size n...

 Size = \# of symbols + \# of operations

- How many states does $<A>$ have?

 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Recap

- Finite automata
 - Alphabet, states…
 - \((\Sigma, Q, q_0, F, \delta)\)

- Types
 - Deterministic (DFA)
 - Non-deterministic (NFA)

- Reducing RE to NFA
 - Concatenation
 - Union
 - Closure
Reducing NFA to DFA

DFA ← NFA

can reduce

RE

can reduce
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example

```
NFA
S1 → a → S2
S2 → ε → S3

DFA
S1 → a → S1, S2, S3
```
Algorithm for Reducing NFA to DFA

- Reduction applied using the **subset** algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - **Input**
 - NFA \((\Sigma, Q, q_0, F_n, \delta)\)
 - **Output**
 - DFA \((\Sigma, R, r_0, F_d, \delta)\)
 - **Using two subroutines**
 - \(\varepsilon\)-closure(\(\delta, p\)) (and \(\varepsilon\)-closure(\(\delta, S\)))
 - move(\(\delta, p, a\)) (and move(\(\delta, S, a\)))
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists \ p, p_1, p_2, \ldots p_n, q \in Q \) such that
 - \(\{p,\varepsilon,p_1\} \in \delta \)
 - \(\{p_1,\varepsilon,p_2\} \in \delta \)
 - \(\ldots \)
 - \(\{p_n,\varepsilon,q\} \in \delta \)

- **ε-closure(\(\delta, p \))**
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta, p \)) = \{ q \mid p \xrightarrow{\varepsilon} q \text{ in } \delta \} \)
 - \(\varepsilon \)-closure(\(\delta, Q \)) = \{ q \mid p \in Q, p \xrightarrow{\varepsilon} q \text{ in } \delta \} \)
 - **Notes**
 - \(\varepsilon \)-closure(\(\delta, p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
\(\varepsilon \)-closure: Example 1

- Following NFA contains
 - \(S_1 \xrightarrow{\varepsilon} S_2 \)
 - \(S_2 \xrightarrow{\varepsilon} S_3 \)
 - \(S_1 \xrightarrow{\varepsilon} S_3 \)
 - Since \(S_1 \xrightarrow{\varepsilon} S_2 \) and \(S_2 \xrightarrow{\varepsilon} S_3 \)

- \(\varepsilon \)-closures
 - \(\varepsilon \)-closure(\(S_1 \)) = \{ S_1, S_2, S_3 \}
 - \(\varepsilon \)-closure(\(S_2 \)) = \{ S_2, S_3 \}
 - \(\varepsilon \)-closure(\(S_3 \)) = \{ S_3 \}
 - \(\varepsilon \)-closure(\{ S_1, S_2 \}) = \{ S_1, S_2, S_3 \} \cup \{ S_2, S_3 \} \)
\(\varepsilon\)-closure: Example 2

- Following NFA contains
 - \(S1 \xrightarrow{\varepsilon} S3 \)
 - \(S3 \xrightarrow{\varepsilon} S2 \)
 - \(S1 \xrightarrow{\varepsilon} S2 \)
 - Since \(S1 \xrightarrow{\varepsilon} S3 \) and \(S3 \xrightarrow{\varepsilon} S2 \)

- \(\varepsilon\)-closures
 - \(\varepsilon\)-closure(\(S1 \)) = \{ \(S1, S2, S3 \) \}
 - \(\varepsilon\)-closure(\(S2 \)) = \{ \(S2 \) \}
 - \(\varepsilon\)-closure(\(S3 \)) = \{ \(S2, S3 \) \}
 - \(\varepsilon\)-closure(\{ \(S2, S3 \) \}) = \{ \(S2 \} \cup \{ \(S2, S3 \} \)
\(\varepsilon \)-closure Algorithm: Approach

Input: NFA \((\Sigma, Q, q_0, F_n, \delta)\), State Set \(R \)

Output: State Set \(R' \)

Algorithm

Let \(R' = R \) \hspace{1cm} // \text{start states}

Repeat

Let \(R = R' \) \hspace{1cm} // \text{continue from previous}

Let \(R' = R \cup \{ q \mid p \in R, (p, \varepsilon, q) \in \delta \} \) \hspace{1cm} // \text{new} \ \varepsilon \text{-reachable states}

Until \(R = R' \) \hspace{1cm} // \text{stop when no new states}

This algorithm computes a **fixed point**

- see note linked from project description
ε-closure Algorithm Example

Calculate ε-closure(δ, $\{S1\}$)

\[
\begin{align*}
R & \quad R' \\
\{S1\} & \quad \{S1\} \\
\{S1\} & \quad \{S1, S2\} \\
\{S1, S2\} & \quad \{S1, S2, S3\} \\
\{S1, S2, S3\} & \quad \{S1, S2, S3\}
\end{align*}
\]

\[\begin{array}{c}
S1 & \overset{\varepsilon}{\to} & S2 \\
S2 & \overset{\varepsilon}{\to} & S3
\end{array}\]

Let $R' = R$
Repeat
\[\begin{array}{c}
R = R' \\
R' = R' \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}
\end{array}\]
Until $R = R'$
Calculating move(p,a)

- move(δ,p,a)
 - Set of states reachable from p using exactly one transition on a
 - Set of states q such that \{p, a, q\} ∈ δ
 - move(δ,p,a) = \{ q | \{p, a, q\} ∈ δ \}
 - move(δ,Q,a) = \{ q | p ∈ Q, \{p, a, q\} ∈ δ \}
 - i.e., can “lift” move() to start from a set of states Q

- Notes:
 - move(δ,p,a) is Ø if no transition (p,a,q) ∈ δ, for any q
 - We write move(p,a) or move(R,a) when δ clear from context
move(a,p) : Example 1

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(S1, a) = \{ S2, S3 \}$
 - $\text{move}(S1, b) = \emptyset$
 - $\text{move}(S2, a) = \emptyset$
 - $\text{move}(S2, b) = \{ S3 \}$
 - $\text{move}(S3, a) = \emptyset$
 - $\text{move}(S3, b) = \emptyset$

move($\{S1,S2\},b) = \{ S3 \}$
move(a,p) : Example 2

Following NFA
- $\Sigma = \{ a, b \}$

Move
- $move(S1, a) = \{ S2 \}$
- $move(S1, b) = \{ S3 \}$
- $move(S2, a) = \{ S3 \}$
- $move(S2, b) = \emptyset$
- $move(S3, a) = \emptyset$
- $move(S3, b) = \emptyset$

$move(\{S1,S2\},a) = \{S2,S3\}$
NFA → DFA Reduction Algorithm ("subset")

- **Input** NFA $(\Sigma, Q, q_0, F_n, \delta)$, **Output** DFA $(\Sigma, R, r_0, F_d, \delta')$

- **Algorithm**

 Let $r_0 = \varepsilon$-closure(δ,q_0), add it to R \hspace{1cm} // DFA start state

 While \exists an unmarked state $r \in R$ \hspace{1cm} // process DFA state r

 Mark r \hspace{1cm} // each state visited once

 For each $a \in \Sigma$ \hspace{1cm} // for each letter a

 Let $E = move(\delta,r,a)$ \hspace{1cm} // states reached via a

 Let $e = \varepsilon$-closure(δ,E) \hspace{1cm} // states reached via ε

 If $e \notin R$ \hspace{1cm} // if state e is new

 Let $R = R \cup \{e\}$ \hspace{1cm} // add e to R (unmarked)

 Let $\delta' = \delta' \cup \{r, a, e\}$ \hspace{1cm} // add transition $r \rightarrow e$

 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$ \hspace{1cm} // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(δ, S1) = \{ {S1, S3} \}
- $R = \{ {S1, S3} \}$
- $r \in R = \{S1, S3\}$
- $move(\delta, \{S1, S3\}, a) = \{S2\}$
 - $e = \varepsilon$-closure(δ, S2) = S2
 - $R = R \cup \{S2\} = \{S1, S3\}, \{S2\}$
 - $\delta' = \delta' \cup \{S1, S3\}, a, \{S2\}$
- $move(\delta, \{S1, S3\}, b) = \emptyset$
NFA → DFA Example 1 (cont.)

- $R = \{ \{S1,S3\}, \{S2\} \}$
- $r \in R = \{S2\}$
- $\text{move}(\delta, \{S2\}, a) = \emptyset$
- $\text{move}(\delta, \{S2\}, b) = \{S3\}$
 - $e = \varepsilon\text{-closure}(\delta, \{S3\}) = \{S3\}$
 - $R = R \cup \{S3\} = \{ \{S1,S3\}, \{S2\}, \{S3\} \}$
 - $\delta' = \delta' \cup \{\{S2\}, b, \{S3\}\}$
NFA → DFA Example 1 (cont.)

- \(R = \{ \{S1, S3\}, \{S2\}, \{S3\} \} \)
- \(r \in R = \{S3\} \)
- \(\text{Move}(\{S3\}, a) = \emptyset \)
- \(\text{Move}(\{S3\}, b) = \emptyset \)
- Mark \(\{S3\} \), exit loop
- \(F_d = \{\{S1, S3\}, \{S3\}\} \)
 - Since \(S3 \in F_n \)
- Done!
NFA → DFA Example 2

NFA

DFA

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:
NFA \rightarrow DFA Example 3

- NFA
- DFA

$R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}$
NFA \rightarrow DFA Example
NFA → DFA Practice
NFA \rightarrow DFA Practice
Analyzing the reduction

- Any string from \{A\} to either \{D\} or \{CD\}
 - Represents a path from A to D in the original NFA
Subset Algorithm as a Fixed Point

Input: NFA \((\Sigma, Q, q_0, F, \delta)\)

Output: DFA \(M'\)

Algorithm

Let \(q_0' = \epsilon\text{-closure}(\delta, q_0)\)

Let \(F' = \{q_0'\}\) if \(q_0' \cap F \neq \emptyset\), or \(\emptyset\) otherwise

Let \(M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset)\) \hspace{1cm} // starting approximation of DFA

Repeat

Let \(M = M'\) \hspace{1cm} // current DFA approx

For each \(q \in \text{states}(M), a \in \Sigma\) \hspace{1cm} // for each DFA state \(q\) and letter \(a\)

Let \(s = \epsilon\text{-closure}(\delta, \text{move}(\delta, q, a))\) \hspace{1cm} // new subset from \(q\)

Let \(F' = \{s\}\) if \(s \cap F \neq \emptyset\), or \(\emptyset\) otherwise, // subset contains final?

\[M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, a, s)\})\] \hspace{1cm} // update DFA

Until \(M' = M\) \hspace{1cm} // reached fixed point
Redux: DFA to NFA Example 1

- $q_0' = \epsilon$-closure(δ, S1) = {S1, S3}
- $F' = \{\{S1, S3\}\}$ since $\{S1, S3\} \cap \{S3\} \neq \emptyset$

$M' = \{ \Sigma, \{\{S1, S3\}\}, \{S1, S3\}, \{\{S1, S3\}\}, \emptyset \}$_

Graphs:

- **DFA**
 - States: S1, S2, S3
 - Alphabet: {1, 3}

- **NFA**
 - States: S1, S2, S3
 - Alphabet: a, b, ϵ

Diagram:

- q_0' starts at S1
- δ' transitions:
 - a from S1 to S2
 - b from S2 to S3
 - ϵ from S1 to S2

F' is the set of accepting states: {S1, S3}
Redux: DFA to NFA Example 1 (cont)

- \(M' = \{ \Sigma, \{\{S1, S3\}\}, \{S1, S3\}, \{\{S1, S3\}\}, \emptyset \} \)
 - \(q = \{S1, S3\} \)
 - \(a = a \)
 - \(s = \{S2\} \)
 - since move(\(\delta\),\{S1, S3\},a) = \{S2\}
 - and \(\varepsilon\)-closure(\(\delta\),\{S2\}) = \{S2\}
 - \(F' = \emptyset \)
 - Since \(\{S2\} \cap \{S3\} = \emptyset \)
 - where \(s = \{S2\}\) and \(F = \{S3\}\)

- \(M' = M' \cup (\emptyset, \{\{S2\}\}, \emptyset, \emptyset, \{(\{S1, S3\}, a, \{S2\})\}) \)
 - \(Q' = Q' \cup \{1, 3\} \)
 - \(q_0' = q_0 \)
 - \(F' = F' \cup \{2\} \)
 - \(\delta' = \delta' \cup \{(\{S1, S3\}, a, \{S2\})\} \)
Redux: DFA to NFA Example 1 (cont)

- $M' = \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{([S1,S3],a,\{S2\})\} \}$
 - $q = \{S2\}$
 - $a = b$
 - $s = \{S3\}$
 - since $\text{move}(\delta,\{S2\},b) = \{S3\}$
 - and ε-closure($\delta,\{S3\}$) = $\{S3\}$
- $F' = \{\{S3\}\}$
 - Since $\{S3\} \cap \{S3\} = \{S3\}$
 - where $s = \{S3\}$ and $F = \{S3\}$

- $M' = M' \cup (\emptyset, \{\{S3\}\}, \emptyset, \{\{S3\}\}, \{([S2],b,\{S3\})\})$
 = $\{ \Sigma, \{\{S1,S3\},\{S2\},\{S3\}\}, \{S1,S3\}, \{\{S1,S3\},\{S3\}\}, \{([S1,S3],a,\{S2\}), ([S2],b,\{S3\})\} \}$

\[Q', q_0', F', \delta' \]
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$
Reducing DFA to RE

DFA can reduce NFA

DFA can transform RE

NFA can transform RE
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

$$((0 + 1(0\ 1^*\ 0)1)^*)$$
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
- Implementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

- **Intuition**
 - Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

- **Algorithm**
 - Construct initial partition
 - Accepting & non-accepting states
 - Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
 - Update transitions & remove dead states

J. Hopcroft, “An $n \log n$ algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \(\{S, T, U, V\} \)
 - All transitions on \(a \) lead to identical partition \(P_2 \)
 - Even though transitions on \(a \) lead to different states
Splitting Partitions (cont.)

- Need to split partition \(\{S,T,U\} \) into \(\{S,T\}, \{U\} \)
 - Transitions on \(a \) from \(S,T \) lead to partition \(P_2 \)
 - Transition on \(a \) from \(U \) lead to partition \(P_3 \)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept: \(\{ R \} = P1 \)
 - Reject: \(\{ S, T \} = P2 \)

- **Split partition? → Not required, minimization done**
 - \(\text{move}(S,a) = T \in P2 \)
 - \(\text{move}(S,b) = R \in P1 \)
 - \(\text{move}(T,a) = T \in P2 \)
 - \(\text{move}(T,b) = R \in P1 \)
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

 - **Initial partitions**
 - Accept: \(\{ R \} = P_1 \)
 - Reject: \(\{ S, T \} = P_2 \)

 - **Split partition? → Yes, different partitions for B**
 - move(\(S, a \)) = T \(\in \) P_2
 - move(\(S, b \)) = T \(\in \) P_2
 - move(\(T, a \)) = T \(\in \) P_2
 - move(\(T, b \)) = R \(\in \) P_1

DFA already minimal
Minimizing DFA: Example 3
Minimizing DFA: Example 3
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a,b\}$
Complement of DFA

- **Algorithm**
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- **Note this only works with DFAs**
 - Why not with NFAs?
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

cur_state = 0;
while (1) {
 symbol = getchar();
 switch (cur_state) {
 case 0: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("rejected\n"); return 0;
 default: printf("rejected\n"); return 0;
 }
 break;
 case 1: switch (symbol) {
 case '0': cur_state = 0; break;
 case '1': cur_state = 1; break;
 case '\n': printf("accepted\n"); return 1;
 default: printf("rejected\n"); return 0;
 }
 break;
 default: printf("unknown state; I'm confused\n");
 }
 break;
}

It's easy to build a program which mimics a DFA

Implementing DFAs (generic)

More generally, use generic table-driven DFA

given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:

\[
\begin{align*}
\text{let } q &= q_0 \\
\text{while (there exists another symbol } s \text{ of the input string)} & \\
& \quad q := \delta(q, s); \\
& \quad \text{if } q \in F \text{ then} \\
& \quad \quad \text{accept} \\
& \quad \text{else reject}
\end{align*}
\]

- \(q\) is just an integer
- Represent \(\delta\) using arrays or hash tables
- Represent \(F\) as a set
Running Time of DFA

How long for DFA to decide to accept/reject string s?

• Assume we can compute $\delta(q, c)$ in constant time
• Then time to process s is $O(|s|)$
 ➢ Can’t get much faster!

Constructing DFA for RE A may take $O(2^{|A|})$ time

• But usually not the case in practice

So there’s the initial overhead

• But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple byte code interpreter
 - But really just a representation of \((\Sigma, Q_A, q_A, \{f_A\}, \delta_A)\), the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE \rightarrow NFA
 - Concatenation, union, closure
 - NFA \rightarrow DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complement
 - Implementation