
CMSC 330: Organization of
Programming Languages

Strings, Slices, Vectors, HashMaps

in Rust

CMSC330 Fall 2018 Copyright © 2018 Michael Hicks, the University of
Maryland. Some material based on https://doc.rust-
lang.org/book/second-edition/index.html

String Representation
• Rust’s String is a 3-tuple

– A pointer to a byte array (interpreted as UTF-8)
– A (current) length
– A (maximum) capacity Always: length ≤ capacity

2

String pointed-to data is
dropped when the owner is

String Representation

• Rust’s String is a 3-tuple

– A pointer to a byte array (interpreted as UTF-8)

– A (current) length

– A (maximum) capacity

• Always: length ≤ capacity

3

let mut s = String::new();
println!("{}", s.capacity());
for _ in 0..5 {

s.push_str("hello");
println!("{},{}",

s.len(),s.capacity());
}

Prints

0

5,5

10,10

15,20

20,20

25,40

Code

Slices: Motivation

• Suppose we want the first word of a string.
Here’s how we might do it in OCaml

• String.sub allocates new memory and copies
the sub-string’s contents
– This is a waste (especially with a large string) if both
s and its substring are to be treated as immutable

4

let first_word s =
try

let i = String.index s ' ' in
String.sub s 0 i

with Not_found -> s

Slice: Shared Data, Separate Metadata
• What we want is to

have both strings
share the same
underlying data

• Happily, Rust’s
containers permit a
way to present a
slice of an object’s
contents

5

String slice

String

String Slices in Rust

• If s is a String, then &s[range] is a string
slice, where range can be as follows.
– i..j is the range from i to j, inclusive
– i.. is the range from i to the current length
– ..j is the range from 0 to j
– .. is the range from 0 to the current length

• &str is the type of a String slice

6

String Slice Example

• Here’s first_word in Rust, using slices:

7

fn first_word(s: &String) -> &str {
let bytes = s.as_bytes();
for (i, &item) in

bytes.iter().enumerate() {
if item == b' ' {

return &s[0..i];
}

}
&s[..]

}

Using String Slices
• A &str slice borrows from the original string

– Just like an immutable String reference
– This prevents dangling pointers

• String literals are slices

• Should use slices where possible
– E.g., fn first_word(s:&str) -> &str

• Can convert String s to a slice via &s[..]. Oftentimes,
this coercion is done automatically (due to Deref trait)

8

let mut s = String::from("hello world");
let word = first_word(&s); //borrow
s.clear(); // Error! Can’t take mut ref

let s:&str = "hello world";

Strings Miscellany
• push_str(&mut self, string: &str)

– string argument is a slice, so doesn’t take
ownership, while self is a mutable reference,
implying it is the only such reference

• Iteration over chars, bytes, etc.

• See also split_at_whitespace

9

let s = String::from("hello");
for (i,c) in s.char_indices() {
println!("{},{}",i,c);

}

Prints
0,h
1,e
2,l
3,l
4,o

Code

https://doc.rust-lang.org/std/string/struct.String.html

Vectors: Basics

• Vec<T> in Rust is Arraylist<T> in Java

• Indexing can fail (panic) or return an Option

10

{ let mut v:Vec<i32> = Vec::new();
v.push(1); // adds 1 to v
v.push(“hi”); //error – v contains i32s
let w = vec![1, 2, 3];

} // v,w and their elements dropped

let v = vec![1, 2, 3, 4, 5];
let third:&i32 = &v[2]; //panics if OOB
let third:Option<&i32> = v.get(2); //None if OOB

https://doc.rust-lang.org/book/second-edition/ch08-01-vectors.html

Aside: Options

• Option<T> is an enumerated type, like an
OCaml variant
– Some(v) and None are possible values

• We’ll see more about enumerated types later
– For now, follow your nose

11

let v = vec![1, 2, 3, 4, 5];
let third:Option<&i32> = v.get(2);
let z =

match third {
Some(i) => Some(i+1), //matches here
None => None

};

Vectors: Updates and Iteration

– If we remove the {} block around the def of p,
above, then the code fails

• Not allowed to print via a while mutable borrow p is out

– Iterator variable can be mutable or immutable:

12

let mut a = vec![10, 20, 30, 40, 50];
{ let p = &mut a[1]; //mutable borrow

*p = 2; //updates a[1]
}//ownership restored
println!("vector contains {:?}",&a);

let v = vec![100, 32, 57];
for i in &v { println!("{}", i); }
for i in &mut v { *i += 50; }

Vector and Strings

• Like Strings, vectors can have slices

• Strings implemented internally as a Vec<u8>

13

let a = vec![10, 20, 30, 40, 50];
let b = &a[1..3]; //[20,30]
let c = &b[1]; //30
println!("{}",c); //prints 30

HashMaps

• HashMap<K,V> has the expected methods
(roughly – see manual for gory details)
– new : () -> HashMap<K,V>
– insert: (K,V) -> Option<V>
– get : (&K) -> Option<&V>

• See also
– get_mut, entry, and or_insert

14

https://doc.rust-lang.org/std/collections/struct.HashMap.html
https://doc.rust-lang.org/book/second-edition/ch08-03-hash-maps.html

