CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**
- **Parser** converts tokens into an **AST** (abstract syntax tree) using **context free grammars**
Scanning ("tokenizing")

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp \[a-zA-Z_][a-zA-Z0-9_]*
- Simplest case: a token is just a string
 - type token = string
 - But representation might be more full featured
- Scanner typically ignores/eliminates whitespace
Simple Scanner in OCaml

```ocaml
type token = string

let tokenize (s: string) = ... (* returns token list *)
;;

let tokenize s =
  let l = String.length s in
  let rec tok sidx slen =
    if sidx >= l then ("", sidx)
    else if String.get s sidx = ' ' then
tok (sidx+1) 1
    else if (sidx+slen) >= l then
      (String.sub s sidx slen, l)
    else if String.get s (sidx+slen) = ' ' then
      (String.sub s sidx slen, sidx+slen)
    else
tok sidx (slen+1) in
let rec alltoks idx =
  let (t, idx') = tok idx 1 in
  if t = "" then []
  else t::alltoks idx' in
alltoks 0

tokenize "this is a string" = ["this"; "is"; "a"; "string"]
```
More Interesting Scanner

type token =
 Tok_Num of char
| Tok_Sum
| Tok_END

let tokenize (s:string) = ...
(* returns token list *)

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
let rec tok pos s =
 if pos >= String.length s then
 [Tok_END]
 else
 if (Str.string_match re_num s pos) then
 let token = Str.matched_string s in
 (Tok_Num token.[0])::(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum::(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
in
 tok 0 str

_tokenize "1+2" =
 [Tok_Num '1';
 Tok_Sum;
 Tok_Num '2';
 Tok_END]

Uses Str library module for regexps
Implementing Parsers

Many efficient techniques for parsing
• I.e., for turning strings into parse trees
• Examples
 - LL(k), SLR(k), LR(k), LALR(k)…
 - Take CMSC 430 for more details

One simple technique: recursive descent parsing
• This is a top-down parsing algorithm

Other algorithms are bottom-up
Top-Down Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

(Assume: id is variable name, n is integer)

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }
Bottom-up Parsing (Intuition)

\[E \rightarrow \text{id} = n \mid \{ \text{L} \} \]
\[L \rightarrow E \; ; \; L \mid \varepsilon \]

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

- Example grammar
 - \(S \rightarrow aA, \ A \rightarrow Bc, \ B \rightarrow b \)

- Example parse
 - \(abc \rightarrow aBc \rightarrow aA \rightarrow S \)
 - Derivation happens in reverse

- Something to look forward to in CMSC 430

- Complicated to use; requires tool support
 - \textit{Bison, yacc} produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table

- Shift-reduce parsers handle more grammars
 - Error messages may be confusing

- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

Goal
- Determine if we can produce the string to be parsed from the grammar's start symbol

Approach
- Recursively replace nonterminal with RHS of production

At each step, we'll keep track of two facts
- What tree node are we trying to match?
- What is the lookahead (next token of the input string)?
 - Helps guide selection of production used to replace nonterminal
Recursive Descent Parsing (cont.)

At each step, 3 possible cases

- If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
- If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
- Otherwise fail with a parsing error
Parsing Example

\[E \rightarrow \text{id} = n \mid \{ \ L \} \]
\[L \rightarrow E \ ; \ L \mid \varepsilon \]

- Here \(n \) is an integer and \(\text{id} \) is an identifier

- One input might be

 - \(\{ \ x = 3; \ \{ \ y = 4; \}; \} \)

 - This would get turned into a list of tokens

 \(\{ \ x = 3 \ ; \ \{ \ y = 4 \ ; \ \} \ ; \ \} \)

 - And we want to turn it into a parse tree
Parsing Example (cont.)

$$E \rightarrow \text{id} = n \mid \{ L \}$$
$$L \rightarrow E \; ; \; L \mid \varepsilon$$

$$\{ \text{x} = 3 \; ; \; \{ \text{y} = 4 \; ; \} \; ; \}$$

lookahead
Recursive Descent Parsing (cont.)

- **Key step**
 - Choosing which production should be selected

- **Two approaches**
 - **Backtracking**
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - **Predictive parsing (what we will do)**
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
First Sets

Motivating example

- The lookahead is x
- Given grammar $S \rightarrow xyz \mid abc$
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - Select $S \rightarrow A$, since A can derive string beginning with x

In general

- Choose a production that can derive a sentential form beginning with the lookahead
- Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

Definition

- First(γ), for any terminal or nonterminal γ, is the set of initial terminals of all strings that γ may expand to.
- We’ll use this to decide what production to apply.

Examples

- Given grammar S → xyz | abc
 - First(xyz) = { x }, First(abc) = { a }
 - First(S) = First(xyz) U First(abc) = { x, a }

- Given grammar S → A | B A → x | y B → z
 - First(x) = { x }, First(y) = { y }, First(A) = { x, y }
 - First(z) = { z }, First(B) = { z }
 - First(S) = { x, y, z }
Calculating First(γ)

- For a terminal \(a \)
 - \(\text{First}(a) = \{ a \} \)

- For a nonterminal \(N \)
 - If \(N \rightarrow \varepsilon \), then add \(\varepsilon \) to \(\text{First}(N) \)
 - If \(N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n \), then (note the \(\alpha_i \) are all the symbols on the right side of one single production):
 - Add \(\text{First}(\alpha_1 \alpha_2 \ldots \alpha_n) \) to \(\text{First}(N) \), where \(\text{First}(\alpha_1 \alpha_2 \ldots \alpha_n) \) is defined as
 - \(\text{First}(\alpha_1) \) if \(\varepsilon \notin \text{First}(\alpha_1) \)
 - Otherwise \((\text{First}(\alpha_1) - \varepsilon) \cup \text{First}(\alpha_2 \ldots \alpha_n) \)
 - If \(\varepsilon \in \text{First}(\alpha_i) \) for all \(i, 1 \leq i \leq k \), then add \(\varepsilon \) to \(\text{First}(N) \)
First() Examples

E → id = n | { L }
L → E ; L | ε

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("{")= { "" }
First(";")= { ";" }
First(E) = { id, "{" }
First(L) = { id, "{" , ε }

E → id = n | { L } | ε
L → E ; L

First(id) = { id }
First("=") = { "=" }
First(n) = { n }
First("{")= { "{" }
First("{")= { "" }
First(";")= { ";" }
First(E) = { id, "{" , ε }
First(L) = { id, "{" , ";" }
Quiz #1

Given the following grammar:

What is $\text{First}(S)$?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #1

Given the following grammar:

```
S  ->  aAB
A  ->  CBC
B  ->  b
C  ->  cC  |  ε
```

What is First(S)?

A. {a}
B. {b, c}
C. {b}
D. {c}
Quiz #2

Given the following grammar:

\[
\begin{align*}
S &\rightarrow aAB \\
A &\rightarrow CBC \\
B &\rightarrow b \\
C &\rightarrow cC \mid \epsilon
\end{align*}
\]

What is \textbf{First}(B)?

A. \{a\} \\
B. \{b\} \\
C. \{b, c\} \\
D. \{c\}
Quiz #2

Given the following grammar:

```
S  ->  aAB
A  ->  CBC
B  ->  b
C  ->  cC  |  ε
```

What is First(B)?

A. {a}
B. {b}
C. {b, c}
D. {c}
Quiz #3

Given the following grammar:

What is First(A)?
A. {a}
B. {b}
C. {c}
D. {b, c}
Quiz #3

Given the following grammar:

\[
\begin{align*}
S &\rightarrow aAB \\
A &\rightarrow CBC \\
B &\rightarrow b \\
C &\rightarrow cC \mid \varepsilon
\end{align*}
\]

What is \textbf{First}(A)?

A. \{a\}
B. \{b\}
C. \{c\}
D. \{b,c\}
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 | [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

- The body of `parse_N` for a nonterminal `N` does the following
 - Let `N → β_1 | ... | β_k` be the productions of `N`
 - Here `β_i` is the entire right side of a production: a sequence of terminals and nonterminals
 - Pick the production `N → β_i` such that the lookahead is in `First(β_i)`
 - It must be that `First(β_i) ∩ First(β_j) = ∅` for `i ≠ j`
 - If there is no such production, but `N → ε` then return
 - Otherwise fail with a parse error
 - Suppose `β_i = α_1 α_2 ... α_n`. Then call `parse_α_1(); ... ; parse_α_n()` to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{ x \}$, $\text{First}(abc) = \{ a \}$

- Parser

  ```ml
  let parse_S () =
    if lookahead () = "x" then (* $S \rightarrow xyz$ *)
      (match_tok "x";
       match_tok "y";
       match_tok "z")
    else if lookahead () = "a" then (* $S \rightarrow abc$ *)
      (match_tok "a";
       match_tok "b";
       match_tok "c")
    else raise (ParseError "parse_S")
  ```
Another Example Parser

- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - First(A) = \{ x, y \}, First(B) = \{ z \}

- Parser:
  ```
  let rec parse_S () =
      if lookahead () = "x" ||
          lookahead () = "y" then
          parse_A () (* S → A *)
      else if lookahead () = "z" then
          parse_B () (* S → B *)
      else raise (ParseError "parse_S")
  and parse_A () =
      if lookahead () = "x" then
          match_tok "x" (* A → x *)
      else if lookahead () = "y" then
          match_tok "y" (* A → y *)
      else raise (ParseError "parse_A")
  and parse_B () = ...
  ```
Example

\[E \rightarrow \text{id} = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(\(E\)) = \{ \text{id}, \{"\} \}

Parser:

let rec parse_E () =
 if lookahead () = "id" then
 (* \(E \rightarrow \text{id} = n\) *)
 (match_tok "id";
 match_tok ";=";
 match_tok "n")
 else if lookahead () = ";" then
 (* \(E \rightarrow \{ L \}\) *)
 (match_tok ";"
 parse_L ()
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L () =
 if lookahead () = "id"
 || lookahead () = "\{" then
 (* \(L \rightarrow E ; L\) *)
 (parse_E ()
 match_tok ";";
 parse_L ())
 else
 (* \(L \rightarrow \varepsilon\) *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar

 \[
 S \rightarrow xyz
 S \rightarrow abc
 \]

- String “xyz”

  ```
  parse_S ()
  match_tok “x” / \ 
  match_tok “y” x y z
  match_tok “z”
  ```

- Grammar

 \[
 S \rightarrow A | B
 A \rightarrow x | y
 B \rightarrow z
 \]

- String “x”

  ```
  parse_S ()
  parse_A ()
  match_tok “x”
  ```
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use

- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ϵ
 - Possible infinite recursion

- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar \(E \rightarrow ab \mid ac \)

- \(\text{First}(ab) = a \)

 Parser cannot choose between

- \(\text{First}(ac) = a \)

 RHS based on lookahead!

Parser fails whenever \(A \rightarrow \alpha_1 \mid \alpha_2 \) and

- \(\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \varepsilon \) or \(\emptyset \)

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

- **Given grammar**
 - \(A \rightarrow x\alpha_1 | x\alpha_2 | ... | x\alpha_n | \beta \)

- **Rewrite grammar as**
 - \(A \rightarrow xL | \beta \)
 - \(L \rightarrow \alpha_1 | \alpha_2 | ... | \alpha_n \)

- Repeat as necessary

- **Examples**
 - \(S \rightarrow ab | ac \) \(\Rightarrow S \rightarrow aL \) \(L \rightarrow b | c \)
 - \(S \rightarrow abcA | abB | a \) \(\Rightarrow S \rightarrow aL \) \(L \rightarrow bcA | bB | \epsilon \)
 - \(L \rightarrow bcA | bB | \epsilon \) \(\Rightarrow L \rightarrow bL' | \epsilon \) \(L' \rightarrow cA | B \)
Alternative Approach

- Change structure of parser
 - First match **common prefix** of productions
 - Then use lookahead to chose between productions

- Example
 - Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```ocaml
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* $E \rightarrow a+b$ *)
    (match_tok "+"; match_tok "b")
  else if lookahead () = "*" then (* $E \rightarrow a*b$ *)
    (match_tok "*"; match_tok "b")
  else () (* $E \rightarrow a$ *)
```
Left Recursion

Consider grammar $S \rightarrow Sa \mid \varepsilon$

- Try writing parser

```ocaml
let rec parse_S () =
    if lookahead () = "a" then
        (parse_S ();
         match_tok "a") (* S → Sa *)
    else ()
```

- Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

Consider grammar $S \rightarrow aS | \varepsilon$

- Try writing parser

```ml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()) (* S → aS *)
  else ()
```

- Will $\text{parse}_S(\)$ infinite loop?
 - Invoking match_tok will advance lookahead, eventually stop

- Top down parsers handles grammar w/ right recursion
Algorithm To Eliminate Left Recursion

Given grammar
- A → Aα₁ | Aα₂ | ... | Aαₙ | β
 - β must exist or no derivation will yield a string

Rewrite grammar as (repeat as needed)
- A → βL
- L → α₁L | α₂L | ... | αₙL | ε

Replaces left recursion with right recursion

Examples
- S → Sa | ε ⇔ S → L L → aL | ε
- S → Sa | Sb | c ⇔ S → cL L → aL | bL | ε
What Does the following code parse?

```
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
         match_tok "x";
         match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #4

What Does the following code parse?

```
let parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
         match_tok "x";
         match_tok "y")
    else if lookahead () = "q" then
        match_tok "q"
    else
        raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

- What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
      parse_S ()
    )
  else if lookahead () = "q" then
    (match_tok "q";
      match_tok "p"
    )
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ()
   )
else if lookahead () = "q" then
  (match_tok "q";
   match_tok "p"
   )
else
  raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

\[
\begin{align*}
S & \rightarrow aBa \\
B & \rightarrow bC \\
C & \rightarrow \varepsilon \mid Cc
\end{align*}
\]

A. Yes
B. No
(due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.
Abstract Syntax Trees (cont.)

- Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language
 - Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already
 - \[E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E^*E \mid (E) \]
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`
 - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

```latex
let rec parse_S () =
    if lookahead () = "a" then
        let n1 = match_tok "a" in
        let n2 = parse_A () in
        Node(n1, n2)
    else raise ParseError "parse_S"
```
The Compilation Process

source program → Compiler → target program

Lexing → Parsing → AST → Intermediate Code Generation → Optimization

regexps DFAs → CFGs PDAs

(may not actually be constructed)