CMSC 330: Organization of Programming Languages

OCaml
Higher Order Functions
Anonymous Functions

- Recall code blocks in Ruby

 \[(1..10).each \{ |x| \text{print } x \}\]

 - Here, we can think of \{ |x| \text{print } x \} as a function

- We can do this (and more) in OCaml
Anonymous Functions

- Passing functions around is very common
 - So often we don’t want to bother to give them names

- Use **fun** to make a function with no name

```
fun x -> x + 3
```

```
(fun x -> x + 3) 5 = 8
```
Anonymous Functions

- Syntax
 - `fun x1 ... xn -> e`

- Evaluation
 - An anonymous function is an expression
 - In fact, *it is a value* – no further evaluation is possible
 - As such, it can be passed to other functions, returned from them, stored in a variable, etc.

- Type checking
 - `(fun x1 ... xn -> e) : (t1 -> ... -> tn -> u)`
 - when `e : u` under assumptions `x1 : t1, ..., xn : tn`.
 - (Same rule as `let f x1 ... xn = e`)
All Functions Are Anonymous

- Functions are first-class, so you can bind them to other names as you like
  ```
  let f x = x + 3;;
  let g = f;;
  g 5   = 8
  ```

- In fact, let for functions is syntactic shorthand
  ```
  let f x = body
  ↓ is semantically equivalent to
  let f = fun x -> body
  ```
Example Shorthands

- `let next x = x + 1`
 - Short for `let next = fun x -> x + 1`

- `let plus x y = x + y`
 - Short for `let plus = fun x y -> x + y`

- `let rec fact n =`
 - `if n = 0 then 1 else n * fact (n - 1)`
 - Short for `let rec fact = fun n ->`
 - `(if n = 0 then 1 else n * fact (n - 1))`
Defining Functions Everywhere

let move l x =
 let left x = x - 1 in (* locally defined fun *)
 let right x = x + 1 in (* locally defined fun *)
 if l then left x
 else right x

;;

let move' l x = (* equivalent to the above *)
 if l then (fun y -> y - 1) x
 else (fun y -> y + 1) x
Calling Functions, Generalized

Syntax \(e_0 e_1 \ldots e_n \)

Evaluation

- Evaluate arguments \(e_1 \ldots e_n \) to values \(v_1 \ldots v_n \)
 - Order is actually right to left, not left to right
 - But this doesn’t matter if \(e_1 \ldots e_n \) don’t have side effects

- Evaluate \(e_0 \) to a function \(\texttt{fun } x_1 \ldots x_n \rightarrow e \)

- Substitute \(v_i \) for \(x_i \) in \(e \), yielding new expression \(e' \)

- Evaluate \(e' \) to value \(v \), which is the final result

\(\not{\text{just a variable}} \ f \)
Calling Functions, Generalized

- Syntax $e_0 \ e_1 \ \ldots \ e_n$

- Type checking (almost the same as before)
 - If $e_0 : t_1 \rightarrow \ldots \rightarrow t_n \rightarrow u$ and $e_1 : t_1, \ldots, e_n : t_n$
 then $e_0 \ e_1 \ \ldots \ e_n : u$

- Example:
 - $(\text{fun } x \rightarrow x+1) \ 1 : \text{int}$
 - since $(\text{fun } x \rightarrow x+1) : \text{int} \rightarrow \text{int}$ and $1 : \text{int}$
Pattern Matching With Fun

- **match** can be used within **fun**

 \[(\text{fun } l \rightarrow \text{match } l \text{ with } (h::_ \rightarrow h)) \ [1; 2] \]
 \[= 1\]

- But use named functions for complicated matches
- May use standard pattern matching abbreviations

 \[(\text{fun } (x, y) \rightarrow x+y) \ (1,2) \]
 \[= 3\]
Quiz 1: What does this evaluate to?

```ml
let y = (fun x -> x+1) 2 in
    (fun y -> y+2) y
```

A. *Error*
B. 3
C. 5
D. 2
Quiz 1: What does this evaluate to?

```ocaml
let y = (fun x -> x+1) 2 in (fun y -> y+2) y
```

A. Error
B. 3
C. 5
D. 2
Quiz 2: What does this evaluate to?

```
let f x = 0 in
let g = f in
f (fun i -> i+1) 1
```

A. Error
B. 2
C. 1
D. 0
Quiz 2: What does this evaluate to?

```
let f x = 0 in
let g = f in
g (fun i -> i+1) 1
```

The function has type 'a -> int. It is applied to too many arguments.

A. Error
B. 2
C. 1
D. 0
Passing Functions as Arguments

- In OCaml you can pass functions as arguments (akin to Ruby code blocks)

```ocaml
let plus_three x = x + 3 (* int -> int *)
let twice f z = f (f z) (* ('a->'a) -> 'a -> 'a *)
twice plus_three 5 = 11
```

- Ruby’s `collect` is called `map` in OCaml
 - `map f l` applies function `f` to each element of `l`, and puts the results in a new list (preserving order)

```ocaml
map plus_three [1; 2; 3] = [4; 5; 6]
map (fun x -> (-x)) [1; 2; 3] = [-1; -2; -3]
```
The Map Function

Let's write the map function

- Takes a function and a list, applies the function to each element of the list, and returns a list of the results

```ocaml
let rec map f l = match l with
  [] -> []
| (h::t) -> (f h)::(map f t)
```

```ocaml
let add_one x = x + 1
let negate x = -x
map add_one [1; 2; 3] = [2; 3; 4]
map negate [9; -5; 0] = [-9; 5; 0]
```

Type of map?
The Map Function (cont.)

What is the type of the map function?

```ocaml
let rec map f l = match l with
  | [] -> []
  | (h::t) -> (f h)::(map f t)
```

('a -> 'b) -> 'a list -> 'b list
The Fold Function

- **Common pattern**
 - Iterate through list and apply function to each element, keeping track of partial results computed so far

```ocaml
let rec fold f a l = match l with
  [] -> a
 | (h::t) -> fold f (f a h) t
```

- `a` = “accumulator”
- Usually called **fold left** to remind us that `f` takes the accumulator as its first argument

- **What's the type of `fold`?**

  ```
  = ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a
  ```

This is the `fold_left` function in OCaml's standard List library.
Example

```
let rec fold f a l = match l with
  [] -> a
  | (h::t) -> fold f (f a h) t
```

```
let add a x = a + x
fold add 0 [1; 2; 3; 4] →
fold add 1 [2; 3; 4] →
fold add 3 [3; 4] →
fold add 6 [4] →
fold add 10 [] →
10
```

We just built the `sum` function!
Another Example

let rec fold f a l = match l with
 [] -> a
 | (h::t) -> fold f (f a h) t

let next a _ = a + 1
fold next 0 [2; 3; 4; 5] ->
fold next 1 [3; 4; 5] ->
fold next 2 [4; 5] ->
fold next 3 [5] ->
fold next 4 [] ->
4

We just built the length function!
Using Fold to Build Reverse

Let’s build the reverse function with fold!

```ocaml
let rec fold f a l = match l with
  [] -> a
| (h::t) -> fold f (f a h) t
```

- Let’s build the **reverse** function with **fold**!

```
let prepend a x = x::a
fold prepend [] [1; 2; 3; 4] →
fold prepend [1] [2; 3; 4] →
fold prepend [2; 1] [3; 4] →
fold prepend [3; 2; 1] [4] →
fold prepend [4; 3; 2; 1] [] →
[4; 3; 2; 1]
```
Summary

- **map** f $[v_1; v_2; \ldots; v_n]$

 $= [f\ v_1; f\ v_2; \ldots; f\ v_n]$

 - e.g., $\text{map} \ (\text{fun} \ x \to x+1) [1; 2; 3] = [2; 3; 4]$

- **fold** f v $[v_1; v_2; \ldots; v_n]$

 $= \text{fold} \ f \ (f\ v\ v_1) \ [v_2; \ldots; v_n]$

 $= \text{fold} \ f \ (f(f\ v\ v_1)\ v_2) \ [\ldots; v_n]$

 $= \ldots$

 $= f\ (f\ (f\ (f\ v\ v_1)\ v_2)\ \ldots)\ v_n$

 - e.g., $\text{fold add} \ 0 \ [1; 2; 3; 4] =$

 \[
 \text{add} \ (\text{add} \ (\text{add} \ (\text{add} \ 0 \ 1) \ 2) \ 3) \ 4 = 10
 \]
Quiz 3: What does this evaluate to?

```
let g x = x+1 in
  (fun f y -> f y) g 1
```

A. Error
B. 2
C. 1
D. (id 2)
Quiz 3: What does this evaluate to?

```
let g x = x+1 in
(fun f y -> f y) g 1
```

A. Error
B. 2
C. 1
D. (id 2)
Quiz 4: What does this evaluate to?

\[
\text{map (fun x -> x *. 4)} [1;2;3]
\]

A. \([1.0; 2.0; 3.0]\]
B. \([4.0; 8.0; 12.0]\]
C. Error
D. \([4; 8; 12]\]
Quiz 4: What does this evaluate to?

\[
\text{map (fun x -> x *. 4) [1;2;3]}
\]

A. \([1.0; 2.0; 3.0]\]
B. \([4.0; 8.0; 12.0]\]
C. Error
D. \([4; 8; 12]\]
Quiz 5: What does this evaluate to?

fold (fun a y -> y::a) [] [3;4;2]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error
Quiz 5: What does this evaluate to?

\[
\text{fold (fun a y -> y::a) [] [3;4;2]}
\]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error
Quiz 6: What does this evaluate to?

```haskell
let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]
```

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false
Quiz 6: What does this evaluate to?

```haskell
let is_even x = (x mod 2 == 0) in
map is_even [1;2;3;4;5]
```

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false
Combining map and fold

- Idea: map a list to another list, and then fold over it to compute the final result
 - Basis of the famous “map/reduce” framework from Google, since these operations can be parallelized

```ocaml
let countone l = fold (fun a h -> if h=1 then a+1 else a) 0 l
let countones ss = let counts = map countone ss in fold (fun a c -> a+c) 0 counts

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2
```
fold_right

- Right-to-left version of fold:

```ocaml
let rec fold_right f l a = match l with
    [] -> a
| (h::t) -> f h (fold_right f t a)
```

- Left-to-right version used so far:

```ocaml
let rec fold f a l = match l with
    [] -> a
| (h::t) -> fold f (f a h) t
```
Left-to-right vs. right-to-left

\[
\text{fold } f \ v \ [v_1; v_2; \ldots; v_n] = \\
f (f (f (f (f \ v \ v_1) \ v_2) \ldots) \ v_n)
\]

\[
\text{fold_right } f \ [v_1; v_2; \ldots; v_n] \ v = \\
f (f (f (f (f \ v_n \ v) \ldots) \ v_2) \ v_1)
\]

\[
\text{fold } (\text{fun } x \ y \rightarrow x - y) \ 0 \ [1;2;3] = -6
\]
since \((0-1)-2)-3) = -6

\[
\text{fold_right } (\text{fun } x \ y \rightarrow x - y) \ [1;2;3] \ 0 = 2
\]
since \(1-(2-(3-0))) = 2\]
When to use one or the other?

- Many problems lend themselves to `fold_right`
- But it does present a performance disadvantage
 - The recursion builds up a deep stack: One stack frame for each recursive call of `fold_right`
- An optimization called *tail recursion* permits optimizing `fold` so that it uses no stack at all
 - We will see how this works in a later lecture!