
CMSC 330: Organization of
Programming Languages

OCaml
Higher Order Functions

1
CMSC330 Fall 2018

Anonymous Functions

Recall code blocks in Ruby

• Here, we can think of { |x| print x } as a function

We can do this (and more) in OCaml

2

(1..10).each { |x| print x }

3

Anonymous Functions

Passing functions around is very common
• So often we don’t want to bother to give them names

Use fun to make a function with no name

(fun x -> x + 3) 5

fun x -> x + 3

Parameter Body

= 8

Anonymous Functions

Syntax
• fun x1 … xn -> e

Evaluation
• An anonymous function is an expression
• In fact, it is a value – no further evaluation is possible

Ø As such, it can be passed to other functions, returned from
them, stored in a variable, etc.

Type checking
• (fun x1 … xn -> e) : (t1 -> … -> tn -> u)

when e : u under assumptions x1 : t1, …, xn : tn.
Ø (Same rule as let f x1 … xn = e)

4

5

All Functions Are Anonymous

Functions are first-class, so you can bind them
to other names as you like
let f x = x + 3;;
let g = f;;
g 5

In fact, let for functions is syntactic shorthand
let f x = body

↓ is semantically equivalent to
let f = fun x -> body

= 8

6

Example Shorthands
let next x = x + 1

• Short for let next = fun x -> x + 1

let plus x y = x + y

• Short for let plus = fun x y -> x + y

let rec fact n =
if n = 0 then 1 else n * fact (n-1)

• Short for let rec fact = fun n ->
(if n = 0 then 1 else n * fact (n-1))

7

Defining Functions Everywhere
let move l x =

let left x = x – 1 in (* locally defined fun *)
let right x = x + 1 in (* locally defined fun *)
if l then left x
else right x

;;

let move’ l x = (* equivalent to the above *)
if l then (fun y -> y – 1) x
else (fun y -> y + 1) x

Calling Functions, Generalized

Syntax e0 e1 … en
Evaluation
• Evaluate arguments e1 … en to values v1 … vn

Ø Order is actually right to left, not left to right
Ø But this doesn’t matter if e1 … en don’t have side effects

• Evaluate e0 to a function fun x1 … xn -> e
• Substitute vi for xi in e, yielding new expression e’
• Evaluate e’ to value v, which is the final result

8

Not just a variable f

Calling Functions, Generalized

Syntax e0 e1 … en
Type checking (almost the same as before)
• If e0 : t1 -> … -> tn -> u and e1 : t1, …, en : tn

then e0 e1 … en : u
Example:
• (fun x -> x+1) 1 : int
• since (fun x -> x+1): int -> int and 1 : int

9

10

Pattern Matching With Fun

match can be used within fun
(fun l -> match l with (h::_) -> h) [1; 2]

But use named functions for complicated matches
May use standard pattern matching abbreviations
(fun (x, y) -> x+y) (1,2)

= 1

= 3

A. Error
B. 3
C. 5
D. 2

11

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun y -> y+2) y

A. Error
B. 3
C. 5
D. 2

12

Quiz 1: What does this evaluate to?

let y = (fun x -> x+1) 2 in
(fun y -> y+2) y

A. Error
B. 2
C. 1
D. 0

13

Quiz 2: What does this evaluate to?

let f x = 0 in
let g = f in
g (fun i -> i+1) 1

A. Error
B. 2
C. 1
D. 0

14

Quiz 2: What does this evaluate to?

let f x = 0 in
let g = f in
g (fun i -> i+1) 1

This function has type 'a -> int
It is applied to too many arguments;

15

Passing Functions as Arguments
In OCaml you can pass functions as arguments
(akin to Ruby code blocks)
let plus_three x = x + 3 (* int -> int *)

let twice f z = f (f z) (* ('a->'a) -> 'a -> 'a *)
twice plus_three 5 = 11

Ruby’s collect is called map in OCaml
• map f l applies function f to each element of l, and

puts the results in a new list (preserving order)

map plus_three [1; 2; 3] = [4; 5; 6]
map (fun x -> (-x)) [1; 2; 3] = [-1; -2; -3]

16

The Map Function

Let’s write the map function
• Takes a function and a list, applies the function to each

element of the list, and returns a list of the results

let add_one x = x + 1
let negate x = -x
map add_one [1; 2; 3] = [2; 3; 4]
map negate [9; -5; 0] = [-9; 5; 0]

Type of map?

let rec map f l = match l with
[] -> []

| (h::t) -> (f h)::(map f t)

17

The Map Function (cont.)

What is the type of the map function?

('a -> 'b) -> 'a list -> 'b list

f l

let rec map f l = match l with
[] -> []

| (h::t) -> (f h)::(map f t)

18

Common pattern
• Iterate through list and apply function to each element,

keeping track of partial results computed so far

• a = �accumulator�
• Usually called fold left to remind us that f takes the

accumulator as its first argument
What's the type of fold?

let rec fold f a l = match l with
[] -> a

| (h::t) -> fold f (f a h) t

The Fold Function

= ('a -> 'b -> 'a) -> 'a -> 'b list -> 'a

This is the fold_left
function in OCaml’s
standard List library

19

Example

let add a x = a + x
fold add 0 [1; 2; 3; 4] →
fold add 1 [2; 3; 4] →
fold add 3 [3; 4] →
fold add 6 [4] →
fold add 10 [] →
10

We just built the sum function!

let rec fold f a l = match l with
[] -> a

| (h::t) -> fold f (f a h) t

20

Another Example

let next a _ = a + 1
fold next 0 [2; 3; 4; 5] →
fold next 1 [3; 4; 5] →
fold next 2 [4; 5] →
fold next 3 [5] →
fold next 4 [] →
4

We just built the length function!

let rec fold f a l = match l with
[] -> a

| (h::t) -> fold f (f a h) t

21

Using Fold to Build Reverse

Let’s build the reverse function with fold!
let prepend a x = x::a
fold prepend [] [1; 2; 3; 4] →
fold prepend [1] [2; 3; 4] →
fold prepend [2; 1] [3; 4] →
fold prepend [3; 2; 1] [4] →
fold prepend [4; 3; 2; 1] [] →
[4; 3; 2; 1]

let rec fold f a l = match l with
[] -> a

| (h::t) -> fold f (f a h) t

Summary

map f [v1; v2; …; vn]
= [f v1; f v2; …; f vn]

• e.g., map (fun x -> x+1) [1;2;3] = [2;3;4]

fold f v [v1; v2; …; vn]
= fold f (f v v1) [v2; …; vn]
= fold f (f (f v v1) v2) […; vn]
= …

= f (f (f (f v v1) v2) …) vn
§ e.g., fold add 0 [1;2;3;4] =

add (add (add (add 0 1) 2) 3) 4 = 10
22

A. Error
B. 2
C. 1
D. (id 2)

23

Quiz 3: What does this evaluate to?

let g x = x+1 in
(fun f y -> f y) g 1

A. Error
B. 2
C. 1
D. (id 2)

24

Quiz 3: What does this evaluate to?

let g x = x+1 in
(fun f y -> f y) g 1

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

25

Quiz 4: What does this evaluate to?

map (fun x -> x *. 4) [1;2;3]

26

map (fun x -> x *. 4) [1;2;3]

Quiz 4: What does this evaluate to?

A. [1.0; 2.0; 3.0]
B. [4.0; 8.0; 12.0]
C. Error
D. [4; 8; 12]

Quiz 5: What does this evaluate to?

27

fold (fun a y -> y::a) [] [3;4;2]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

Quiz 5: What does this evaluate to?

28

fold (fun a y -> y::a) [] [3;4;2]

A. [9]
B. [3;4;2]
C. [2;4;3]
D. Error

29

Quiz 6: What does this evaluate to?

let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false

30

let is_even x = (x mod 2 = 0) in
map is_even [1;2;3;4;5]

Quiz 6: What does this evaluate to?

A. [false;true;false;true;false]
B. [0;1;1;2;2]
C. [0;0;0;0;0]
D. false

Combining map and fold

Idea: map a list to another list, and then fold
over it to compute the final result
• Basis of the famous “map/reduce” framework from

Google, since these operations can be parallelized

31

let countone l =
fold (fun a h -> if h=1 then a+1 else a) 0 l

let countones ss =
let counts = map countone ss in
fold (fun a c -> a+c) 0 counts

countones [[1;0;1]; [0;0]; [1;1]] = 4
countones [[1;0]; []; [0;0]; [1]] = 2

fold_right

32

let rec fold_right f l a = match l with
[] -> a

| (h::t) -> f h (fold_right f t a)

let rec fold f a l = match l with
[] -> a

| (h::t) -> fold f (f a h) t

Right-to-left version of fold:

Left-to-right version used so far:

Left-to-right vs. right-to-left

fold f v [v1; v2; …; vn] =
f (f (f (f v v1) v2) …) vn

fold_right f [v1; v2; …; vn] v =
f (f (f (f vn v) …) v2) v1

fold (fun x y -> x – y) 0 [1;2;3] = -6

since ((0-1)-2)-3) = -6
fold_right (fun x y -> x – y) [1;2;3] 0 = 2

since 1-(2-(3-0)) = 2
33

When to use one or the other?

Many problems lend themselves to fold_right
But it does present a performance disadvantage
• The recursion builds of a deep stack: One stack

frame for each recursive call of fold_right
An optimization called tail recursion permits
optimizing fold so that it uses no stack at all
• We will see how this works in a later lecture!

34

