
CMSC 330: Organization of
Programming Languages

Closures
(Implementing Higher Order Functions)

1
CMSC330 Fall 2018

2

Returning Functions as Results

In OCaml you can pass functions as arguments
• to map, fold, etc.
and return functions as results
let pick_fn n =

let plus_three x = x + 3 in
let plus_four x = x + 4 in
if n > 0 then plus_three else plus_four

pick_fn : int -> (int->int)

Here, pick_fn takes an int argument, and
returns a function

3

Multi-argument Functions

Consider a rewriting of the previous code
let pick_fn n =

if n > 0 then (fun x->x+3) else (fun x->x+4)

Here’s another version

let pick_fn n =
(fun x -> if n > 0 then x+3 else x+4)

which is just shorthand for
let pick_fn n x =

if n > 0 then x+3 else x+4 I.e., a multi-argument
function!

4

Currying

We just saw a way for a function to take multiple
arguments!
• The function consumes one argument and returns a

function that takes the rest

This is called currying the function
• Named after the logician Haskell B. Curry
• But Schönfinkel and Frege discovered it

Ø So it should probably be called Schönfinkelizing or Fregging

5

Curried Functions In OCaml

OCaml syntax defaults to currying. E.g.,

• is identical to all of the following:

Thus:
• add has type int -> (int -> int)

• add 3 has type int -> int
Ø add 3 is a function that adds 3 to its argument

• (add 3) 4 = 7

This works for any number of arguments

let add x y = x + y

let add = (fun x -> (fun y -> x + y))
let add = (fun x y -> x + y)
let add x = (fun y -> x+y)

6

Syntax Conventions for Currying

Because currying is so common, OCaml uses
the following conventions:
• -> associates to the right

Ø Thus int -> int -> int is the same as
Ø int -> (int -> int)

• function application associates to the left
Ø Thus add 3 4 is the same as
Ø (add 3) 4

9

Currying is Standard In OCaml

Pretty much all functions are curried
• Like the standard library map, fold, etc.
• See /usr/local/ocaml/lib/ocaml on Grace

Ø In particular, look at the file list.ml for standard list functions
Ø Access these functions using List.<fn name>
Ø E.g., List.hd, List.length, List.map

OCaml works hard to make currying efficient
• Because otherwise it would do a lot of useless

allocation and destruction of closures
• What are those, you ask? Let’s see …

Quiz 1: What is enabled by currying?

A. Passing functions as arguments
B. Passing only a portion of the expected

arguments
C. Naming arguments
D. Converting easily between tuples and

multiple arguments

10

Quiz 1: What is enabled by currying?

A. Passing functions as arguments
B. Passing only a portion of the expected

arguments
C. Naming arguments
D. Converting easily between tuples and

multiple arguments

11

A. let f b = fun a -> a / b;;
B. let f = fun a | b -> a / b;;
C. let f (a, b) = a / b;;
D. let f = (fun a -> (fun b -> a / b));;

12

let f a b = a / b;;

Quiz 2: Which f definition is equivalent?

A. let f b = fun a -> a / b;;
B. let f = fun a | b -> a / b;;
C. let f (a, b) = a / b;;
D. let f = (fun a -> (fun b -> a / b));;

13

let f a b = a / b;;

Quiz 2: Which f definition is equivalent?

14

How Do We Implement Currying?
• Implementing currying is tricky. Consider:

• (Equivalent to...)

• When the anonymous function is called by map, n
may not be on the stack any more!
Ø We need some way to keep n around after addN returns

let addN n l =
let add x = n + x in
map add l

Accessing variable
from outer scope

let addN n =
(fun l -> map (fun x -> n + x) l)

15

The Call Stack in C/Java/etc.

void f(void) {
int x;
x = g(3);

}

x <junk>

int g(int x) {
int y;
y = h(x);
return y;

}
int h (int z) {

return z + 1;
}

x 3
y <junk>
z 3

4

4

int main(){
f();
return 0;

}

f

g

h

16

Now Consider Returning Functions

Uh oh...how does add know the value of n?
• OCaml does not read it off the stack

Ø The language could do this, but can be confusing (see above)

• OCaml uses static scoping like C, C++, Java, and Ruby

let addN n l =

map add l

let map f n = match n with
[] -> []

| (h::t) -> (f h)::(map f t)

addN 3 [1; 2; 3]

let add x = n + x in

n 3

l <list>

f <add>

n

x 1

17

Static Scoping (aka Lexical Scoping)

In static or lexical scoping, (nonlocal) names
refer to their nearest binding in the program text
• Going from inner to outer scope
• In our example, add refers to addN’s n
• C example:

int x;
void f() { x = 3; }
void g() { char *x = "hello"; f(); }

Refers to the x at file scope – that’s
the nearest x going from inner scope
to outer scope in the source code

18

Closures Implement Static Scoping

An environment is a mapping from variable
names to values
• Just like a stack frame

A closure is a pair (f, e) consisting of function
code f and an environment e

When you invoke a closure, f is evaluated using
e to look up variable bindings

19

Example – Closure 1

let add x = (fun y -> x + y)

(add 3) 4 → <cl> 4 → 3 + 4 → 7

Function Environment

Closure

20

Example – Closure 2

let mult_sum (x, y) =
let z = x + y in
fun w -> w * z

(mult_sum (3, 4)) 5 → <cl> 5 → 5 * 7 → 35

21

Example – Closure 3

let twice (n, y) =
let f x = x + n in
f (f y)

twice (3, 4) → <cl> (<cl> 4) → <cl> 7 → 10

22

Example – Closure 4

let add x = (fun y -> (fun z -> x + y + z))

(((add 1) 2) 3) →((<cl> 2) 3) →(<cl> 3) → 1+2+3

add() took 3 arguments? The compiler
figures this out and avoids making closures

A. 10
B. 1
C. 15
D. Error - variable name conflicts

23

let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?

A. 10
B. 1
C. 15
D. Error - variable name conflicts

24

let a = 1;;
let a = 0;;
let b = 10;;
let f () = a + b;;
let b = 5;;
let x = f ();;

Quiz 3: What is x?

A. 7
B. -2
C. -1
D. Type Error – insufficient arguments

25

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;

Quiz 4: What is z?

A. 7
B. -2
C. -1
D. Type Error – insufficient arguments

26

Quiz 4: What is z?

let f x = fun y -> x – y in
let g = f 2 in
let x = 3 in
let z = g 4 in
z;;

A. Type Error
B. 0
C. Infinite loop
D. 2

27

let f x =
let rec g y =
if y = 0 then x
else g (y-1) in

(fun z -> g z) in
let z = f 2 0 in
z;;

Quiz 5: What is z?

A. Type Error
B. 0
C. Infinite loop
D. 2

28

let f x =
let rec g y =
if y = 0 then x
else g (y-1) in

(fun z -> g z) in
let z = f 2 0 in
z;;

Quiz 5: What is z?

29

Higher-Order Functions in C

C supports function pointers

typedef int (*int_func)(int);
void app(int_func f, int *a, int n) {
for (int i = 0; i < n; i++)
a[i] = f(a[i]);

}
int add_one(int x) { return x + 1; }
int main() {
int a[] = {5, 6, 7};
app(add_one, a, 3);

}

30

Higher-Order Functions in C (cont.)

C does not support closures
• Since no nested functions allowed
• Unbound symbols always in global scope

int y = 1;
void app(int(*f)(int), n) {
return f(n);

}
int add_y(int x) {
return x + y;

}
int main() {
app(add_y, 2);

}

31

Higher-Order Functions in C (cont.)

Cannot access non-local variables in C
OCaml code

Equivalent code in C is illegal

let add x y = x + y

int (* add(int x))(int) {
return add_y;

}
int add_y(int y) {
return x + y; /* error: x undefined */

}

32

Higher-Order Functions in C (cont.)

OCaml code

Works if C supports nested functions
• Not in ISO C, but in gcc; but not allowed to return them

• Does not allocate closure, so x popped from stack and
add_y will get garbage (potentially) when called

int (* add(int x))(int) {
int add_y(int y) {

return x + y;
}
return add_y; }

let add x y = x + y

Java 8 Supports Lambda Expressions

Ocaml’s

Is like the following in Java 8

Java 8 supports closures, and variations on this
syntax

39

(a, b) -> a + b

fun (a, b) -> a + b

Java 8 Example
public class Calculator {

interface IntegerMath { int operation(int a, int b); }
public int operateBinary(int a, int b, IntegerMath op) {

return op.operation(a, b);
}
public static void main(String... args) {

Calculator myApp = new Calculator();
IntegerMath addition = (a, b) -> a + b;
IntegerMath subtraction = (a, b) -> a - b;
System.out.println("40 + 2 = " +

myApp.operateBinary(40, 2, addition));
System.out.println("20 - 10 = " +

myApp.operateBinary(20, 10, subtraction));
}

}
40

Lambda
expressions

