CMSC 330: Organization of Programming Languages

Operational Semantics
Formal Semantics of a Prog. Lang.

- Mathematical description of the meaning of programs written in that language
 - What a program computes, and what it does

- Three main approaches to formal semantics
 - Denotational
 - Operational
 - Axiomatic
Styles of Semantics

- **Denotational semantics**: translate programs into math!
 - Usually: convert programs into functions mapping inputs to outputs
 - Analogous to compilation

- **Operational semantics**: define how programs execute
 - Often on an abstract machine (mathematical model of computer)
 - Analogous to interpretation

- **Axiomatic semantics**
 - Describe programs as predicate transformers, i.e. for converting initial assumptions into guaranteed properties after execution
 - Preconditions: assumed properties of initial states
 - Postcondition: guaranteed properties of final states
 - Logical rules describe how to systematically build up these transformers from programs
This Course: Operational Semantics

- We will show how an operational semantics may be defined for Micro-Ocaml
 - And develop an interpreter for it, along the way

- Approach: use rules to define a judgment
 \[e \Rightarrow v \]

- Says “e evaluates to v”
- e: expression in Micro-OCaml
- v: value that results from evaluating e
Definitional Interpreter

- It turns out that the rules for judgment \(e \Rightarrow v \) can be easily turned into idiomatic OCaml code
 - The language’s expressions \(e \) and values \(v \) have corresponding OCaml datatype representations \(\text{exp} \) and \(\text{value} \)
 - The semantics is represented as a function

\[
\text{eval}: \text{exp} \rightarrow \text{value}
\]

- This way of presenting the semantics is referred to as a definitional interpreter
 - The interpreter defines the language’s meaning
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

- \(e, x, n \) are \textit{meta-variables} that stand for categories of syntax
 - \(x \) is any identifier (like \(z, y, \text{foo} \))
 - \(n \) is any numeral (like \(1, 0, 10, -25 \))
 - \(e \) is any expression (here defined, recursively!)

\textit{Concrete syntax} of actual expressions in \textbf{black}
- Such as \texttt{let}, +, \texttt{z, foo, in, …}

\texttt{ ::= } and \texttt{|} are \textit{meta-syntax} used to define the syntax of a language (part of “Backus-Naur form,” or BNF)
Micro-OCaml Expression Grammar

\[e ::= x | n | e + e | \text{let } x = e \text{ in } e \]

- **Examples**
 - 1 is a numeral \(n \) which is an expression \(e \)
 - \(1+z \) is an expression \(e \) because
 - 1 is an expression \(e \),
 - \(z \) is an identifier \(x \), which is an expression \(e \), and
 - \(e + e \) is an expression \(e \)
 - \text{let } z = 1 \text{ in } 1+z \) is an expression \(e \) because
 - \(z \) is an identifier \(x \),
 - 1 is an expression \(e \),
 - \(1+z \) is an expression \(e \), and
 - \text{let } x = e \text{ in } e \) is an expression \(e \)
Abstract Syntax = Structure

- Here, the grammar for e is describing its abstract syntax tree (AST), i.e., e’s structure

\[
e ::= x | n | e + e | \text{let } x = e \text{ in } e
\]

This corresponds to (in defn interpreter)

```plaintext
type id = string
type num = int
type exp =
  | Ident of id
  | Num of num
  | Plus of exp * exp
  | Let of id * exp * exp
```
Values

- An expression’s final result is a `value`. What can values be?

\[v ::= n \]

- Just numerals for now
 - In terms of an interpreter’s representation:
 \[
 \text{type value = int}
 \]
 - In a full language, values `v` will also include booleans (true, false), strings, functions, …
Defining the Semantics

- Use rules to define judgment $e \Rightarrow v$

- These rules will allow us to show things like
 - $1+3 \Rightarrow 4$
 - $1+3$ is an expression e, and 4 is a value v
 - This judgment claims that $1+3$ evaluates to 4
 - We use rules to prove it to be true
 - $\text{let foo}=1+2 \text{ in foo+5} \Rightarrow 8$
 - $\text{let f}=1+2 \text{ in let z}=1 \text{ in f+z} \Rightarrow 4$
Rules as English Text

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$
- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$
- Suppose e is a let expression \texttt{let x = e1 in e2}
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2 \{v_1/x\}$ evaluates to v_2, i.e., $e_2 \{v_1/x\} \Rightarrow v_2$
 - Here, $e_2 \{v_1/x\}$ means “the expression after substituting occurrences of x in e_2 with v_1”
 - Then e evaluates to v_2, i.e., \texttt{let x = e1 in e2} $\Rightarrow v_2$
Rules of Inference

- We can use a more compact notation for the rules we just presented: **rules of inference**
 - Has the following format
 \[
 \begin{array}{c}
 H_1 \quad \ldots \quad H_n \\
 \hline
 C
 \end{array}
 \]
 - Says: if the conditions \(H_1 \quad \ldots \quad H_n \) ("hypotheses") are true, then the condition \(C \) ("conclusion") is true
 - If \(n=0 \) (no hypotheses) then the conclusion automatically holds; this is called an **axiom**

- We will use inference rules to speak about evaluation
Rules of Inference: Num and Sum

- Suppose e is a numeral n
 - Then e evaluates to itself, i.e., $n \Rightarrow n$

- Suppose e is an addition expression $e_1 + e_2$
 - If e_1 evaluates to n_1, i.e., $e_1 \Rightarrow n_1$
 - If e_2 evaluates to n_2, i.e., $e_2 \Rightarrow n_2$
 - Then e evaluates to n_3, where n_3 is the sum of n_1 and n_2
 - I.e., $e_1 + e_2 \Rightarrow n_3$
Rules of Inference: Let

- Suppose e is a let expression $\text{let } x = e_1 \text{ in } e_2$
 - If e_1 evaluates to v, i.e., $e_1 \Rightarrow v_1$
 - If $e_2\{v_1/x\}$ evaluates to v_2, i.e., $e_2\{v_1/x\} \Rightarrow v_2$
 - Then e evaluates to v_2, i.e., $\text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2$

<table>
<thead>
<tr>
<th>$e_1 \Rightarrow v_1$</th>
<th>$e_2{v_1/x} \Rightarrow v_2$</th>
</tr>
</thead>
<tbody>
<tr>
<td>let x = e_1 in e_2 \Rightarrow v_2</td>
<td></td>
</tr>
</tbody>
</table>
Derivations

- When we apply rules to an expression in succession, we produce a derivation
 - It’s a kind of tree, rooted at the conclusion

- Produce a derivation by goal-directed search
 - Pick a rule that could prove the goal
 - Then repeatedly apply rules on the corresponding hypotheses

 ➢ Goal: Show that \(\text{let } x = 4 \text{ in } x+3 \Rightarrow 7 \)
Derivations

\[
\begin{align*}
\text{let } x = 4 \text{ in } x + 3 & \Rightarrow 7 \\
4 & \Rightarrow 4 \\
3 & \Rightarrow 3 \\
7 & \text{is } 4 + 3 \\
4 + 3 & \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x + 3 & \Rightarrow 7
\end{align*}
\]
What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)
\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
2 & \Rightarrow 2 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)
\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 & \text{is } 3+8 \\
\hline
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 & \text{is } 2+11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Quiz 1

What is derivation of the following judgment?

\[2 + (3 + 8) \Rightarrow 13 \]

(a)

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(b)

\[
\begin{align*}
3 & \Rightarrow 3 \\
8 & \Rightarrow 8 \\
\hline
3 + 8 & \Rightarrow 11 \\
\hline
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]

(c)

\[
\begin{align*}
8 & \Rightarrow 8 \\
3 & \Rightarrow 3 \\
11 \text{ is } 3+8
\end{align*}
\]

\[
\begin{align*}
2 & \Rightarrow 2 \\
3 + 8 & \Rightarrow 11 \\
13 \text{ is } 2+11
\end{align*}
\]

\[
\begin{align*}
2 + (3 + 8) & \Rightarrow 13
\end{align*}
\]
Definitional Interpreter

- The style of rules lends itself directly to the implementation of an interpreter as a recursive function.

```ocaml
let rec eval (e:exp):value =
  match e with
  | Ident x -> (* no rule *) failwith "no value"
  | Num n -> n
  | Plus (e1,e2) ->
    let n1 = eval e1 in
    let n2 = eval e2 in
    let n3 = n1+n2 in
    n3
  | Let (x,e1,e2) ->
    let v1 = eval e1 in
    let e2' = subst v1 x e2 in
    let v2 = eval e2' in v2
```

Trace of evaluation of `eval` function corresponds to a derivation by the rules.
Derivations = Interpreter Call Trees

\[
\begin{align*}
4 & \Rightarrow 4 \\
3 & \Rightarrow 3 \\
7 & \text{is } 4+3 \\
\end{align*}
\]

\[
\begin{align*}
4 & \Rightarrow 4 \\
4+3 & \Rightarrow 7 \\
\text{let } x = 4 \text{ in } x+3 & \Rightarrow 7 \\
\end{align*}
\]

Has the same shape as the recursive call tree of the interpreter:

\[
\begin{align*}
\text{eval } \text{Num } 4 & \Rightarrow 4 \\
\text{eval } \text{Num } 3 & \Rightarrow 3 \\
7 & \text{is } 4+3 \\
\end{align*}
\]

\[
\begin{align*}
\text{eval } (\text{subst } 4 \text{ "x"}) & \\
\text{eval } \text{Num } 4 & \Rightarrow 4 \\
\text{Plus(Ident("x"),Num 3))} & \Rightarrow 7 \\
\text{eval Let("x",Num 4,Plus(Ident("x"),Num 3))} & \Rightarrow 7 \\
\end{align*}
\]
Semantics Defines Program Meaning

- \(e \Rightarrow v \) holds if and only if a *proof* can be built
 - Proofs are derivations: axioms at the top, then rules whose hypotheses have been proved to the bottom
 - No proof means \(e \not\Rightarrow v \)
- Proofs can be constructed bottom-up
 - In a goal-directed fashion
- Thus, function \(\text{eval} \, e = \{ v \mid e \Rightarrow v \} \)
 - Determinism of semantics implies at most one element for any \(e \)
- So: Expression \(e \) *means* \(v \)
Environment-style Semantics

- The previous semantics uses substitution to handle variables
 - As we evaluate, we replace all occurrences of a variable x with values it is bound to

- An alternative semantics, closer to a real implementation, is to use an environment
 - As we evaluate, we maintain an explicit map from variables to values, and look up variables as we see them
Environments

Mathematically, an environment is a partial function from identifiers to values

- If A is an environment, and x is an identifier, then $A(x)$ can either be ...
- … a value (intuition: the variable has been declared)
- … or undefined (intuition: variable has not been declared)

An environment can also be thought of as a table

- If A is

<table>
<thead>
<tr>
<th>Id</th>
<th>Val</th>
</tr>
</thead>
<tbody>
<tr>
<td>x</td>
<td>0</td>
</tr>
<tr>
<td>y</td>
<td>2</td>
</tr>
</tbody>
</table>

- then $A(x)$ is 0, $A(y)$ is 2, and $A(z)$ is undefined
Notation, Operations on Environments

- • is the empty environment (undefined for all ids)
- \(x: v \) is the environment that maps \(x \) to \(v \) and is undefined for all other ids
- If \(A \) and \(A' \) are environments then \(A, A' \) is the environment defined as follows
 \[
 (A, A')(x) = \begin{cases}
 A'(x) & \text{if } A'(x) \text{ defined} \\
 A(x) & \text{if } A'(x) \text{ undefined but } A(x) \text{ defined} \\
 \text{undefined} & \text{otherwise}
 \end{cases}
 \]
- So: \(A' \) shadows definitions in \(A \)
- For brevity, can write \(\cdot, A \) as just \(A \)
Semantics with Environments

- The environment semantics changes the judgment
 \[e \Rightarrow v \]
 to be
 \[A; e \Rightarrow v \]
 where \(A \) is an environment
 - Idea: \(A \) is used to give values to the identifiers in \(e \)
 - \(A \) can be thought of as containing declarations made up to \(e \)

- Previous rules can be modified by
 - Inserting \(A \) everywhere in the judgments
 - Adding a rule to look up variables \(x \) in \(A \)
 - Modifying the rule for \texttt{let} to add \(x \) to \(A \)
Environment-style Rules

\[A(x) = v \]
\[A; x \Rightarrow v \]

Look up variable \(x \) in environment \(A \)

\[A; e1 \Rightarrow v1 \]
\[A; e2 \Rightarrow v2 \]
\[A; \text{let } x = e1 \text{ in } e2 \Rightarrow v2 \]

Extend environment \(A \) with mapping from \(x \) to \(v1 \)

\[A; e1 \Rightarrow n1 \]
\[A; e2 \Rightarrow n2 \]
\[n3 \text{ is } n1 + n2 \]
\[A; e1 + e2 \Rightarrow n3 \]
Quiz 2

What is a derivation of the following judgment?

\[\text{•; let } x=3 \text{ in } x+2 \Rightarrow 5 \]

(a) \[\begin{align*}
 x & \Rightarrow 3 \\
 2 & \Rightarrow 2 \\
 5 \text{ is } 3+2 \\
 3 \Rightarrow 3 \\
 x+2 & \Rightarrow 5 \\
\end{align*} \]

\[\text{let } x=3 \text{ in } x+2 \Rightarrow 5 \]

(b) \[\begin{align*}
 x:3; & x \Rightarrow 3 \\
 x:3; & 2 \Rightarrow 2 \\
 5 \text{ is } 3+2 \\
 x:2; & x \Rightarrow 3 \\
 x:2; & 2 \Rightarrow 2 \\
 \text{is } 3+2 \\
 \text{let } x=3 \text{ in } x+2 \Rightarrow 5
\end{align*} \]

(c) \[\begin{align*}
 x & \Rightarrow 3 \\
 x:2; & x \Rightarrow 3 \\
 2 & \Rightarrow 2 \\
 5 \text{ is } 3+2 \\
 \text{let } x=3 \text{ in } x+2 \Rightarrow 5
\end{align*} \]
Quiz 2

What is a derivation of the following judgment?

•; let x=3 in x+2 ⇒ 5

(a)

\[\begin{align*}
x & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
5 & \text{is 3+2} \\
\hline
3+2 & \Rightarrow 2 \\
3 & \Rightarrow 3 \\
x+2 & \Rightarrow 5 \\
\hline
\text{let x=3 in x+2} & \Rightarrow 5
\end{align*} \]

(b)

\[\begin{align*}
\text{x:3}; & x \Rightarrow 3 \\
\text{x:3}; & 2 \Rightarrow 2 \\
5 & \text{is 3+2} \\
\hline
\text{let x=3 in x+2} & \Rightarrow 5
\end{align*} \]

(c)

\[\begin{align*}
\text{x:2}; & x \Rightarrow 3 \\
\text{x:2}; & 2 \Rightarrow 2 \\
5 & \text{is 3+2} \\
\hline
\text{let x=3 in x+2} & \Rightarrow 5
\end{align*} \]
Definitional Interpreter: Environments

type env = (id * value) list

let extend env x v = (x,v)::env

let rec lookup env x =
 match env with
 | [] -> failwith "no var"
 | (y,v)::env' ->
 if x = y then v
 else lookup env' x
Definitional Interpreter: Evaluation

```ocaml
let rec eval env e = 
  match e with
  | Ident x -> lookup env x
  | Num n -> n
  | Plus (e1, e2) ->
    let n1 = eval env e1 in
    let n2 = eval env e2 in
    let n3 = n1+n2 in
    n3
  | Let (x, e1, e2) ->
    let v1 = eval env e1 in
    let env' = extend env x v1 in
    let v2 = eval env' e2 in v2
```
Adding Conditionals to Micro-OCaml

\[e ::= x | v | e + e | \text{let } x = e \text{ in } e \]
\[\text{eq0 of } e \mid \text{if } e \text{ then } e \text{ else } e \]

\[v ::= n \mid \text{true} \mid \text{false} \]

• In terms of interpreter definitions:

\[
\text{type } \text{exp} = \begin{cases}
\text{Val of value} \\
\ldots \text{ (* as before *)} \\
\text{Eq0 of exp} \\
\text{If of exp * exp * exp}
\end{cases}
\]

\[
\text{type } \text{value} = \begin{cases}
\text{Int of int} \\
\text{Bool of bool}
\end{cases}
\]
Rules for Eq0 and Booleans

- **Booleans evaluate to themselves**
 - \(A; \text{false} \Rightarrow \text{false} \)

- **eq0 tests for 0**
 - \(A; \text{eq0 0} \Rightarrow \text{true} \)
 - \(A; \text{eq0 3+4} \Rightarrow \text{false} \)
Rules for Conditionals

<table>
<thead>
<tr>
<th>A; e1 ⇒ true</th>
<th>A; e2 ⇒ v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A; if e1 then e2 else e3 ⇒ v</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>A; e1 ⇒ false</th>
<th>A; e3 ⇒ v</th>
</tr>
</thead>
<tbody>
<tr>
<td>A; if e1 then e2 else e3 ⇒ v</td>
<td></td>
</tr>
</tbody>
</table>

- Notice that only one branch is evaluated
 - A; if eq0 0 then 3 else 4 ⇒ 3
 - A; if eq0 1 then 3 else 4 ⇒ 4
Quiz 3

What is the derivation of the following judgment?

\[
\text{.; if eq0 3-2 then 5 else 10 } \Rightarrow 10
\]

(a)
\[
\begin{align*}
\text{.; 3 } & \Rightarrow 3 \\
\text{.; 2 } & \Rightarrow 2 \\
3-2 & \text{ is 1}
\end{align*}
\]
\[
\begin{align*}
\text{.; eq0 3-2 } & \Rightarrow \text{ false} \\
\text{.; 10 } & \Rightarrow 10
\end{align*}
\]
\[
\begin{align*}
\text{.; if eq0 3-2 then 5 else 10 } & \Rightarrow 10
\end{align*}
\]

(b)
\[
\begin{align*}
3 & \Rightarrow 3 \\
2 & \Rightarrow 2 \\
3-2 & \text{ is 1}
\end{align*}
\]
\[
\begin{align*}
\text{eq0 3-2 } & \Rightarrow \text{ false} \\
10 & \Rightarrow 10
\end{align*}
\]
\[
\begin{align*}
\text{if eq0 3-2 then 5 else 10 } & \Rightarrow 10
\end{align*}
\]

(c)
\[
\begin{align*}
\text{.; 3 } & \Rightarrow 3 \\
\text{.; 2 } & \Rightarrow 2 \\
3-2 & \text{ is 1}
\end{align*}
\]
\[
\begin{align*}
\text{.; eq0 3-2 } & \Rightarrow \text{ false} \\
\text{.; 10 } & \Rightarrow 10
\end{align*}
\]
\[
\begin{align*}
\text{.; if eq0 3-2 then 5 else 10 } & \Rightarrow 10
\end{align*}
\]
Quiz 3

What is the derivation of the following judgment?

\[\text{•; if \(eq0 \ 3-2 \) then 5 else 10} \Rightarrow 10 \]

(a)

\[\text{•; 3} \Rightarrow 3 \quad \text{•; 2} \Rightarrow 2 \quad 3-2 \text{ is 1} \]
\[\quad \text{----------------------------------} \]
\[\text{•; eq0 3-2} \Rightarrow \text{false} \quad \text{•; 10} \Rightarrow 10 \]
\[\quad \text{----------------------------------} \]
\[\text{•; if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(b)

\[3 \Rightarrow 3 \quad 2 \Rightarrow 2 \]
\[3-2 \text{ is 1} \]
\[\quad \text{------------------------} \]
\[\text{eq0 3-2} \Rightarrow \text{false} \quad 10 \Rightarrow 10 \]
\[\quad \text{------------------------} \]
\[\text{if eq0 3-2 then 5 else 10} \Rightarrow 10 \]

(c)

\[\text{•; 3} \Rightarrow 3 \]
\[\text{•; 2} \Rightarrow 2 \]
\[3-2 \text{ is 1} \]
\[\quad \text{------------------------} \]
\[\text{•; 3-2} \Rightarrow 1 \quad 1 \neq 0 \]
\[\quad \text{------------------------} \]
\[\text{•; eq0 3-2} \Rightarrow \text{false} \quad \text{•; 10} \Rightarrow 10 \]
\[\quad \text{------------------------} \]
\[\text{•; if eq0 3-2 then 5 else 10} \Rightarrow 10 \]
let rec eval env e =
 match e with
 | Ident x -> lookup env x
 | Val v -> v
 | Plus (e1, e2) ->
 let Int n1 = eval env e1 in
 let Int n2 = eval env e2 in
 let n3 = n1 + n2 in
 Int n3
 | Let (x, e1, e2) ->
 let v1 = eval env e1 in
 let env' = extend env x v1 in
 let v2 = eval env' e2 in v2
 | Eq0 e1 ->
 let Int n = eval env e1 in
 if n = 0 then Bool true else Bool false
 | If (e1, e2, e3) ->
 let Bool b = eval env e1 in
 if b then eval env e2
 else eval env e3

Basically both rules for \texttt{eq0} in this one snippet

Both \texttt{if} rules here
Quick Look: Type Checking

- Inference rules can also be used to specify a program’s **static semantics**
 - I.e., the rules for type checking
- We won’t cover this in depth in this course, but here is a flavor.

- **Types** $t ::= \text{bool} | \text{int}$
- **Judgment** $\vdash e : t$ says e has type t
 - We define inference rules for this judgment, just as with the operational semantics
Some Type Checking Rules

- Boolean constants have type `bool`

 \[
 \vdash \text{true} : \text{bool} \quad \vdash \text{false} : \text{bool}
 \]

- Equality checking has type `bool` too

 • Assuming its target expression has type `int`

 \[
 \vdash e : \text{int} \\
 \vdash \text{eq0 e} : \text{bool}
 \]

- Conditionals

 \[
 \vdash e1 : \text{bool} \quad \vdash e2 : t \quad \vdash e3 : t \\
 \vdash \text{if e1 then e2 else e3 : t}
 \]
Handling Binding

What about the types of variables?
- Taking inspiration from the environment-style operational semantics, what could you do?

Change judgment to be $G \vdash e : t$ which says
e has type t under type environment G
- G is a map from variables x to types t
 - Analogous to map A, maps vars to types, not values

What would be the rules for let, and variables?
Type Checking with Binding

- **Variable lookup**

\[
G(x) = t \\
G \vdash x : t
\]

analogous to

\[
A(x) = v \\
A; x \Rightarrow v
\]

- **Let binding**

\[
G \vdash e_1 : t_1 \\
G, x : t_1 \vdash e_2 : t_2 \\
G \vdash \text{let } x = e_1 \text{ in } e_2 : t_2
\]

analogous to

\[
A; e_1 \Rightarrow v_1 \\
A, x : v_1; e_2 \Rightarrow v_2 \\
A; \text{let } x = e_1 \text{ in } e_2 \Rightarrow v_2
\]
Scaling up

- Operational semantics (and similarly styled typing rules) can handle full languages
 - With records, recursive variant types, objects, first-class functions, and more

- Provides a concise notation for explaining what a language does. Clearly shows:
 - Evaluation order
 - Call-by-value vs. call-by-name
 - Static scoping vs. dynamic scoping
 - ... We may look at more of these later