
CMSC 330, Fall 2018 — Midterm 1

Name

Teaching Assistant

Kameron Aaron Danny Chris Michael P. Justin Cameron B. Derek Kyle Hasan

Shriraj Cameron M. Alex Michael S. Pei-Jo

Instructions

• Do not start this exam until you are told to do so.

• You have 75 minutes for this exam.

• This is a closed book exam. No notes or other aids are allowed.

• For partial credit, show all your work and clearly indicate your answers.

Honor Pledge

Please copy and sign the honor pledge: “I pledge on my honor that I have not given or received any

unauthorized assistance on this examination.”

Section Points

Programming Language Concepts 10

Ruby Regular Expressions 10

Ruby Execution 12

Ruby Programming 18

OCaml Typing 17

OCaml Execution 15

OCaml Programming 18

Total 100

1

Programming Language Concepts

1. [1 pts] (T / F) In every programming language, code must be compiled before it is run.

2. [1 pts] (T / F) Static typing occurs during program execution and dynamic typing occurs before the

program is run.

In the following questions, circle all answers that apply.

3. [2 pts] In Ruby, which of the following are objects?

(a) true (b) Hash.new (c) 2 (d) [1]

4. [2 pts] In OCaml, which of the following are true about functions?

(a) They can take other functions as arguments.

(b) They have to be given a name to be used.

(c) They will throw an error if not given enough arguments.

(d) They can return another function as an output.

5. [2 pts] Which of the following is stored in a closure?

(a) the execution stack (b) the function’s output (c) the environment (d) the function’s code

6. [2 pts] Which of the following fit the functional programming paradigm?

(a) loops

(b) recursion

(c) higher-order functions

(d) mutable variables

2

Ruby Regular Expressions

1. [3 pts] Give the output of the following code snippet.

secret = ""

result = secret.scan(/([a-z]+)(=)/)

puts(result)

2. [2 pts] Given the regular expression /Oh. What’s that?b*/ circle all of the strings that are matched

entirely. (Hint: ? means zero or one.)

(a) Oh. What’s thatb

(b) Oh. What’s that?

(c) Oh! What’s that

(d) Oh. What’s thabb

3. [2 pts] What is the output of the following?

"href=https://www.ign.com/ps4" =~ /.{3}\/([a-z]+\d)/

puts($1)

4. [3 pts] Write a Ruby regular expression to match room numbers. Room numbers are a building code

(three capital letters), followed by a space, followed by a room code (four digits, possibly with a B in

front). Examples are given below.

ESJ 0202 CSI 1115 MTH B0421

3

Ruby Execution

Next to each Ruby snippet, write the output after executing it. If there is an error, then write “error.”

1. [2 pts]

x = {"CMSC330" => 1, "CMSC351" => 2, "CMSC320" => 3}

x["CMSC216"] = 4

if x.key?("CMSC216") then

x["CMSC330"] = x["CMSC216"]

end

puts(x["CMSC330"])

2. [2 pts]

i = 0

x = Hash.new(1)

3.times do

x[i] += 1

i += 1

end

puts(x)

3. [2 pts]

x = [1, 2, 3]

x << "four"

puts(x)

4

4. [3 pts]

def fun(y)

i = 1

while i <= y

yield(i * i)

i += 1

end

end

fun(4) { |x|

puts(x)

}

5. [3 pts]

class Foo

@@y = []

def initialize(ele)

@@y.push(ele)

end

def add(ele)

@@y.push(ele)

@@y

end

end

f = Foo.new(12)

g = Foo.new("a")

h = g.add("e")

h[3] = "i"

puts(g.add("o"))

5

Ruby Programming

You’re in charge of building a Ruby class for a bank that deals exclusively in the tech world’s hottest new

currency: UMDCash. You need to implement the Bank class in order to support this hot new economy and

make the teaching staff very rich. The Bank class must store the account names and each account’s current

tally of UMDCash. You can assume that (a) each account name is distinct, and (b) there are no negative

amounts ever provided to your code.

1. [2 pts] Implement initialize. You will have to decide the proper data structure(s) for storing the data

needed for the rest of the outlined functions.

2. [8 pts] Implement importAccounts that takes the name of a file and loads accounts and their existing

UMDCash tally. The file has one account per line, in the format “name:amount” where the name consists

of (upper and lowercase) letters and the amount is an integer or float. If the same account appears more

than once in the file, store only the highest value. If any line doesn’t follow this format, the line is invalid

and should be skipped. Multiple calls to importAccounts will update existing balances. Names are NOT

case sensitive (i.e. boB and Bob will be treated as the same name).

Here is an example.

b = Bank.new

b.importAccounts("file.txt")

Here is the contents of file.txt.

Bob:10

Alice:48.50

McKenzie:33

Samantha:28.01

Kyle:Fifty # Invalid Line

You may find it useful to use the IO.foreach method, that reads files.

IO.foreach("myfile.txt") { |line| puts line }

3. [4 pts] Implement transfer that takes in an account name from, account name to, and a transfer amount.

It returns true if the transaction succeeds, or false if either of the accounts do not exist or the from

account doesn’t have enough UMDCash to complete the transfer. If false is returned, neither account’s

balance should change.

4. [4 pts] Implement whoIsTheRichest that returns the name of the account in your bank who currently

has the highest UMDCash total. Return nil if there are currently no accounts in your bank.

6

Implement your solution in the class skeleton below.

class Bank

def initialize()

end

def importAccounts(file)

end

def transfer(from, to, amount)

end

def whoIsTheRichest()

end

end

7

OCaml Typing

Recall the definition of ’a option.

type ’a option = Some of ’a | None

Determine the type of the following expressions. If there is an error, write “error.”

1. [3 pts]

fun a -> if a then None else (Some a)

2. [3 pts]

fun a b c -> (a b) +. c > 0.0

Write an expression that has the following type, without using type annotations.

3. [3 pts] int -> int option -> int

4. [3 pts] (’a -> ’b -> ’a * ’b) -> ’a -> ’b -> (’a * ’b) list

For each question, define a function f that when used in the following expressions will not produce any type

errors.

5. [3 pts]

let f g t =

in fun g t -> [g t; f g t]

6. [2 pts]

let f x =

in fun x -> (f x) :: [x]

8

OCaml Execution

Recall the definitions of map, fold_left, and fold_right.

let rec map f xs =

match xs with

| [] -> []

| x :: xt -> (f x) :: (map f xt)

let rec fold_left f a xs =

match xs with

| [] -> a

| x :: xt -> fold_left f (f a x) xt

let rec fold_right f xs a =

match xs with

| [] -> a

| x :: xt -> f x (fold_right f xt a)

Write the final value of the following OCaml expressions next to each snippet. If there is an error, write

“error.”

1. [2 pts]

let y = 3 in

let x = y + 1 in

let y = 5 in

x

2. [2 pts]

let f x y = if x > y then x - y else (if x < y then y - x) in

f 3 2

3. [3 pts]

let f (a1, a2) = a1 * a2 in

map f [(2, 2); (1, 4); (3, 2)]

4. [4 pts]

fold_left (fun a x -> if x mod 3 = 0 then x :: a else a) [] [1; 3; 11; 27]

5. [4 pts]

let rec f l = match l with

| [] -> []

| h :: t -> (fold_left (fun a x -> a * x) 1 t) :: (f t) in

f [1; 2; 3; 4]

9

OCaml Programming

For the following questions you may use map, fold_left, and fold_right.

1. [8 pts] Write sum_thresh : int list -> int -> (int * int) that returns a tuple where

• the first component is the sum of all elements in xs strictly less than thresh, and

• the second component is the sum of all the elements in xs greater than or equal to thresh.

Examples:

sum_thresh [5; 2; 7; 3] 4 = (5, 12)

sum_thresh [1; 2; 10; 5] 5 = (3, 15)

let sum_thresh xs thresh =

2. [10 pts] Write compress: ’a list -> (’a * int) list that packs in consecutive duplicate elements

together in a tuple (a, b), where a is the element and b is the number of consecutive occurrences.

Examples:

compress [] = []

compress ["a"; "a"] = [("a", 2)]

compress ["a"; "a"; "b"; "c"; "b"; "b"] = [("a", 2); ("b", 1); ("c", 1); ("b", 2)]

let compress xs =

10

