Problem 1. Use mathematical induction to show the following:
(a) \[\sum_{i=1}^{n} i(i + 1) = \frac{n(n + 1)(n + 2)}{3} \]
(b) \[\sum_{i=0}^{n} 2^i = 2^{n+1} - 1 \]

Problem 2.
(a) Assume \(b^x = a \). What is \(x \) (in terms of \(a \) and \(b \))?
(b) Using only part (a), show that \(\log_c(ab) = \log_c a + \log_c b \).
(c) Show that \(a^{\log_b n} = n^{\log_b a} \).

Problem 3. Differentiate the following functions:
(a) \(\ln(x^2 + 5) \)
(b) \(\lg(x^2 + 5) \) \[\text{NOTE: In Computer Science we use } \lg x \text{ to mean } \log_2 x.\]
(c) \(\frac{1}{\ln(x^2 + 5)} \)

Problem 4. Integrate the following functions:
(a) \(\frac{1}{x} \)
(b) \(\frac{1}{x+3} \)
(c) \(\ln x \) \[\text{HINT: Use integration by parts.}\]
(d) \(x \ln x \) \[\text{HINT: Use integration by parts.}\]
(e) \(x \lg x \)

Problem 5. Consider the formula \(3n^4 + 7n^3 \log n + 2n^2 \).
(a) What is the high order term?
(b) What is the second order term?
(c) Write the formula in \(\Theta \) notation (in simplest form).