Project 4 part 1 (4A): Paging

Consult the submit server for deadline date and time

1 Overview

[Background: The wvirtual address generated by an instruction consists of a 16-bit segment selector and a
32-bit offset, which together yield a 32-bit linear address. (Specifically, the selector points to a segment
descriptor which yields a segment base address to which the offset is added). Without paging, the linear
address is the same as the physical address. With paging, the linear address is mapped to a physical address
via 2-level page table.]

In this part of the project, you will construct a page table that directly maps linear addresses to physical
addresses. That is, linear and physical addresses in the kernel will be identical.

In the next part, linear addresses from user processes will be mapped to physical addresses that may not
be contiguous or even in physical memory at all. You will also implement a page replacement algorithm,
allow user code to map pages on demand in response to recursive calls in the stack, and mark code and read
only data pages as read-only.

A functioning Fork, Pipe, Signals, and blocking pipe are not required for this project or any later
project. Making Fork() work properly with page tables is a bit of a challenge. Consider adding a “return
EUNSUPPORTED?” at the top of Sys_Fork().

2 Reference

The key reference for this project is the intel manual volume 3A, http://www.intel.com/content/www/us/
en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.
html

Download and enjoy, in particular chapter 4.3.

3 Superpages

You mayE| use 4MB pages in the identity map, however, do not map addresses that are beyond the memory
in the machine (except for the APIC as below) and so not physically present, and do not map the Oth page.
Note that by not mapping the 0th page, you may expect to find null pointer dereferences in old code.

4 The APIC

The APIC controls interrupts, including inter-processor interrupts, and is used in the implementation of
CURRENT_THREAD to determine which processor is currently running the thread.

The APIC and IO-APIC pages will need to be identity mapped into the address space of all processes
at locations OxFEE00000 and 0xFEC00000. These pages should be mapped READ/WRITE but only from
ring 0 not ring 3. That is, they will not be accessible from user code.

1“may” means you may choose to if you like, but are not required to. I think it’s a nice little challenge, yields a more
compact TLB footprint, and is how Linux did kernel-side page tables for a long time.


http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html
http://www.intel.com/content/www/us/en/architecture-and-technology/64-ia-32-architectures-software-developer-vol-3a-part-1-manual.html

The page fault handler is already equipped to terminate a user program that faults while accessing these
regions; it will be your task, eventually, to ensure that user code cannot access these pages while the system
calls that the user code invokes (running with the same page table) can.

5 TODOs

Generally, the TODO macros associated with this project are VIRTUAL_MEMORY _A. Some features tagged
_A may not be required as part of the first milestone.

To set up page tables, you will need to allocate a page directory (via Alloc_Page) and then allocate page
tables for the entire region that will be mapped into this memory context. You will need to fill out the
appropriate fields in the page tables and page directories. The definition of paging tables and directories are
to be found in paging.h (structs pte_t and pde_t). Finally, to enable paging for the first time, you will need
to call the routine Enable Paging(pdbr) which is already defined for you in lowlevel.asm. It takes the base
address of your page directory as a parameter.

The final step of this function is to add a handler for page faults. A default one named Page_Fault_Handler
in paging.c has been provided for you. You should install it by calling Install_Interrupt_Handler. You need
to register this as a handler for interrupts 14 and 46. You should then add a call the Init_VM function from
your main.c (after Init_Interrupts).

You should be able to do this step and test it by itself by temporarily giving user mode access to these
pages - set the flags fields in the page table entries to, for now, include VM_USER. Once you have this
running, you can submit it as your intermediate submission (project 4a).

6 Hints

This is a preliminary assignment meant to prepare you for a more elaborate demand paging assignment, and
to make sure you don’t procrastinate too much. Use this opportunity to develop helper functions that you
may find useful.

Functions in uservm are generally variations on the functions in userseg. To use uservim instead of userseg,
modify Makefile.common. This switch is necessary for part 4B.

I believe the following statement was a workaround for a buggy Qemu, but is no longer accurate: “To
enable paging on a secondary core requires trapping both interrupt 14 and 46.” I mention it because perhaps
you may see an unexpected interrupt 46.

7 Test

There is only one test: does “checkPaging” return / print that paging is enabled? Call it in main(). Paging
must be enabled on each processor core.
8 Submission

To submit this intermediate submission, change your .submit file to submit “4a”, and to submit the final
submission, change your .submit for “4b”.



	Overview
	Reference
	Superpages
	The APIC
	TODOs
	Hints
	Test
	Submission

