
CMSC 425 : Fall 2018 Dave Mount

Homework 2

Handed out Sun, Dec 2. Due: Tue, Dec 11 at 11:59pm. (The standard late penalties for
programming assignments apply.)

Problem 1. (15 points) Your new game engine has procedurally generated buildings. The method
works recursivley. Start with a rectangle, and cut it by a horizontal or vertical line, called
a wall, that contains a single gap, called a door. This splits the original rectangle into two
subrectangles, called rooms, that are connected by this door (see the figure below (a)).

Apply the algorithm recursively to each of the rooms, with the added restriction that each
new wall cannot overlap an existing door. The recursion ends when the rooms are of a desired
size. (The figure shows successive recursive levels and the final structure in (d).)

s

t

(a) (b) (c) (d)

wall

door

room

room

Answer each of the following questions.

(i) In order to generate n rooms in the final structure, what is the total number of walls
(that is, splitting lines) that need to be generated?

(ii) We say that a path is simple if it does not pass through a door more than once (see the
figure below (d)). True or False: Given any structure formed by this algorithm, and
given any two points s and t in different rooms, there exists at least one simple path
between them.

(iii) Two simple paths are said to be equivalent if they pass through the same doors in the
same order. True or False: Given any structure formed by this algorithm, and given
any two points s and t in different rooms, all simple paths are equivalent.

In each case provide a short justification (perhaps a sentence or two). A formal proof is not
required.

Problem 2. (13 points) In addition to producing plant-like models, L-systems can be used for
generating maze-like structures. In the figure below, we show the first two generations of
such a structure. The L-system involves two variables FL and FR. The initial segments, F 0

L

and F 0
R are just line segments. (We have added some embellishments to help distinguish the

two segments, but these are not part of the final drawing.)

1



Intuitively, FL fills in a square that lies to the left of a directed line segment and FR fills in a
square that lies to the right of the directed line segment. The recursive rules for FL and FR

have been cleverly designed so that the resulting curves do not intersect each other, no matter
how many generations we produce. Observe that with each generation distances are scaled
by σ = 1/5, and each individual segment of the basic length is replaced by 25 segments of the
next smaller size. The recursive rule for FL generates 13 instances of FL and 12 instances of
FR, while the rule for FR generates 12 instances of FL and 13 instances of FR. Thus, the first
generations F 1

L and F 1
R each consist of 13 + 12 = 25 segments, each of length 1/5. The second

generations F 2
L and F 2

R each consist of 252 = 625 segments, each of length 1/52 = 1/25.

F 0
L

F 0
R

F 1
L

F 1
R

F 2
L

F 2
R

1

(a) Derive an L-system that generates FL and FR. (Hint: The rules will be long because
each needs to generate 25 segments, with the associated turns.) In particular, please
provide the recursive rules for FL and FR.

(b) Consider the limiting curve F ∗L = limk→∞ F
k
L. Derive its fractal dimension. (Because

each F k
L is a 1-dimensional curve embedded in 2-dimensional space, the fractal dimension

will be in the range between 1 and 2, and it may equal 1 or 2.)

(c) Based on the definition that we gave of a fractal in the class lecture notes, is F ∗L a fractal?
Explain why briefly.

Problem 3. (10 points) A fundamental algorithmic task involving navigation meshes is how to
determine which edges and faces of the mesh are traversed by a path. We will consider how
to solve this task. Suppose that we are given a navigation mesh that is represented as a
doubly-connected edge list (DCEL). Assume further that every face of the DCEL is a convex
polygon, and has no holes.

2



Given two point a and b, let ab be the line segment between these points. Our objective
is to compute a list L = 〈e1, e2, . . . , em〉 of the edges of the navigation mesh that this line
segment passes through (see the figure below). In this problem, we will implement an efficient
algorithm for computing this sequence of edges. First, let us assume that we are given the
faces fa and fb that contain a and b respectively. Let us also assume that each edge e of the
mesh has an associated boolean function e.Crosses(a, b), which indicates whether edge e is
crossed by the line segment ab. We could simply check every edge of the mesh, but this is
not efficient.

Here is an outline of the method that we would like you to implement. Given fa and fb as
arguments, the algorithm first enumerates all the edges about fa until it finds the edge e1
that crosses ab. (Because the faces are all convex, there can be at most one such face.) Add
this edge to the list L. Next, access e1.twin to find the oppositely directed edge, and follow
this sequence of edges around the face to left of this edge until arriving at the next edge (e2
in the figure) that crosses the line segment. Add e2 to the list. Repeat this process until we
arrive at the final edge that has fb to its left (which will be e5.twin in our figure). The edges
visited by this algorithm are illustrated in the dotted path in the figure.

a

b

fa

fbe1
e2

e3 e4
e5

Problem 4. (12 points) How many dimensions are there in the configuration spaces for each of
the following motion-planning problems. Justify your answer in each case by explaining what
each coordinate of the space corresponds to.

(i) Moving a cylindrical shape in 3-dimensional space, which may be translated and rotated
(see the figure below (a)).

(ii) Moving a brick in 3-dimensional space, which may be translated and rotated (see the
figure below (b)).

(iii) Moving a pair of scissors in 3-dimensional space, which may be translated, rotated, and
swung open and closed (see the figure below (c)).

(a) (b) (c)

3


