In-Class Exercise 2

Given vertex \(v \) in a cell complex of a 2-manifold, the *link* of \(v \) is defined to be the edges that bound the faces that are incident to \(v \), excluding the edges that are incident to \(v \) itself. Present a procedure (in pseudocode) that, given a vertex \(v \) of a DCEL, returns a list \(L \) consisting of the half edges of \(v \)'s link ordered counterclockwise about \(v \). For example, in the figure below, a possible output would be \(\langle e_1, \ldots, e_{11} \rangle \). (Any cyclic permutation would be correct.)

\[\]

Solution:

The solution provided below is very short, but a bit tricky. We start with any edge \(e \) that is directed out of \(v \). We start following edges around the face lying to \(e \)'s left side, adding each to the link. (In the above figure, this will add \(e_1 \) through \(e_4 \) to the list, and the next edge visited will be directed into \(v \).) When we return to \(v \) (that is, when the destination of the edge is \(v \)) we make a U-turn by setting \(e \) to its twin, and resume from there. (In the figure above, the next edge to be visited will be \(e_5 \).)

```
\text{link(} \text{Vertex } v \text{) \{} \\
\quad L = \text{new empty-list} \\
\quad e = e0 = v.\text{incident; } // \text{any edge coming out of } v \\
\quad \text{do } \{ \\
\quad \quad \quad e = e.\text{next; } // \text{next edge about } e\text{'s left face} \\
\quad \quad \quad \text{if } (e.\text{dest} == v) \text{ } // \text{returning to } v? \\
\quad \quad \quad \quad e = e.\text{twin;} \\
\quad \quad \quad \text{else} \\
\quad \quad \quad \quad \text{add } e \text{ to } L; \text{ } // \text{ } e \text{ is an edge of the link} \\
\quad \quad \text{\} while } (e != e0); \\
\}\n```