
CMSC 425 : Fall 2018 Dave Mount

CMSC 425: Solutions to the First Midterm Exam

Solution 1:

1.1 Declaring a Unity game object (or more accurately its RigidBody component) to Kinematic
means that the object is entirely under the control of the attached scripts. Unity physics
(forces and collisions) do not affect the object’s motion.

1.2 a− 3(b− a) is equivalent to the affine combination 4a− 3b. Is this not a convex combination,
since the coefficients 4 and −3 do not lie in the interval [0, 1].

1.3 Using Space.Self means that the transformation is applied relative to the object’s local coordi-
nate system (as given by its transform), and using Space.World means that the transformation
is applied relative to the world’s coordinate system.

1.4 See Fig. 1.
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Figure 1: Answer to Problem 1.4: Ordering cells of a grid.

1.5 Without blending, cracks and gaps may develop in the mesh (e.g., between the upper-arm skin
and lower-arm skin when the elbow is bent).

Solution 2:

2.1 Given a point p, it lies within the collider if it satisfies two conditions. First, it lies within
distance r of the center point c, and second, it does not lie on the same side of c as indicated
by the vector ~u. Define ~v = p − c to be the vector from c to p. If ‖~v‖ > r then p is too far
away, and so does not lie within the collider. Otherwise, we test whether the angle between
~v and ~u is acute. If so, p lies the same side of c and indicated by ~u. To test this, we check
whether ~v · ~u > 0. If both conditions fail, then p lies within the collider.

2.2 True: If condition-1 holds, then in order for the two complete spheres to intersect, the southern
hemisphere of collider-1 must intersect the northern hemisphere of collider-2. The second
condition enforces this.

2.3 True: If c1y < c2y then every point of collider-1 lies below any point of collider-2, so the
colliders cannot intersect. If dist(c1, c2) > r1 + r2 then the spheres do not intersect, so the
hemispheres cannot intersect either.
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Solution 3: The projectile’s x- and z-coordinates vary linearly with time t and the y-coordinate
follows an inverted parabola. Letting g = 9.8m/sec2 denote the gravitational acceleration, we have

x(t) = px + tv0,x, z(t) = pz + tv0,z, y(t) = − g

2
t2 + v0,yt+ h.

Let t denote the time when the projectile hits the wall plane (x = 0). We will compute the time
of impact, determine whether this is a valid time, and if so, compute the coordinates where the
projectile hits the wall. We will then determine whether these coordinates lie within the portal.

3.1 The time to hit the wall is determined by considering the x-coordinate of the projectile’s
position. We seek the value of t such that x(t) = px + tv0,x = 0, that is t∗ = −px/v0,x. We
may ignore t∗ if either v0,x = 0 (meaning it is moving parallel to the wall and so never hits
it) or if t∗ < 0 (meaning that the projectile is moving away from the wall and does not hit it
in the future).

3.2 The point at which the projectile hits the wall is

q = (x(t∗), y(t∗), z(t∗)) = (0, −g
2

(t∗)2 + v0,yt
∗ + h, pz + t∗v0,z).

3.3 The projectile passes through the portal, if dist(q, c) ≤ r. Expanding out the formulas this is
equivalent to (

−g
2

(t∗)2 + v0,yt
∗ + h− cy

)2
+
(
pz + t∗v0,z − cz

)2 ≤ r2.
Thus, if t∗ ≥ 0 and the above inequality is satisfied, then the projectile flies through the
portal, and otherwise it does not.

Solution 4:

4.1 The homogeneous coordinates of p with respect to each of the frames are:

(i) Propeller frame: p[c] = (5, 0, 1)T

(ii) Copter frame: p[b] = (0, 13, 1)T

(iii) World frame: p[a] = (10, 20, 1)T

(The “T” superscript indicates that these are all column vectors.)

4.2 Relative to b’s frame, we have c.x = (0, 1, 0), c.y = (−1, 0, 0) and c.o = (0, 8, 1) (all column
vectors in homogeneous coordinates). The matrix T[b←c] has these as its three columns.
Similarly, relative to a’s frame, we have b.x = (1, 0, 0), b.y = (0, 1, 0) and b.o = (10, 7, 1). The
matrix T[a←b] has these as its three columns.

T[b←c] =

 0 −1 0
1 0 8
0 0 1

 T[a←b] =

 1 0 10
0 1 7
0 0 1

 .

As a check of your work, you can verify that p[b] = T[b←c]p[c] and t p[a] = T[a←b]p[b].
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4.3 To get from c to a, we go from c to b and then from b to a. Thus, T[a←c] = T[a←b]T[b←c]. To

get from a back to c we invert this matrix: T[c←a] = T−1[a←c].

4.4 In order to achieve the desired motion, we first convert p[a] to p[c] by applying the transforma-
tion T[c←a]. We then apply the rotation transformation Rot(−ϕ) about the propeller’s frame
(negating ϕ because the rotation is clockwise), then apply T[b←c] to convert to the copter
frame and then apply a rotation of Rot(θ), then apply T[a←b] to convert from to the world’s
frame and apply a translation Tr(b′ − b). We are now in the coordinate frame for the world’s
frame, so no further conversions are needed. Since all this proceeds from right to left, we have

p′[a] =
(
Tr(b′ − b) · T[a←b] · Rot(θ) · T[b←c] · Rot(−ϕ) · T[c←a]

)
p[a].

The final matrix is the quantity in parentheses.

Solution 5:

5.1 The matrix T[w←f ] is the 4×4 matrix whose four columns are f.x, f.y, f.z, and f.o (from left to
right), all given as 4-element homogeneous column vectors with respect to world coordinates.
For the example shown in the figure, note that f.x is directed along the world’s z-axis and
f.z is directed along the world’s −x-axis. Hence, we have

T[w←f ] =


0 0 −1 f.x
0 1 0 f.y
1 0 0 f.z
0 0 0 1

 .

5.2 Analogous to 5.1, but using g.x, g.y, g.z, and g.o, instead. For the example shown in the figure,
note that g.x is directed along the world’s −x-axis and g.z is directed along the world’s −z-
axis. Hence, we have

T[w←g] =


−1 0 0 g.x

0 1 0 g.y
0 0 −1 g.z
0 0 0 1

 .

5.3 Just invert the matrices: T[f←w] = T−1[w←f ] and T[g←w] = T−1[w←g]. Computing inverses by hand
is difficult, but for example, if you work out the case of T[f←w], you get

T[f←w] = T−1[w←f ] =


0 0 1 −f.z
0 1 0 −f.y
−1 0 0 f.x

0 0 0 1

 .

5.4 Here is the idea. First, convert q from world coordinates to entry-portal coordinates: q[f ] =
T[f←w]q[w]. Now, the key insight is that, since q′ is the point corresponding to q in the exit
portal, it’s coordinates with respect to g are the same as q’s coordinate with respect to f .
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That is q′[g] = q[f ]. All that remains is to convert back to world coordinates, which we can do

with q′[w] = T[w←g]q
′
[g] = T[w←g]q[f ]. Putting this together, we have the final answer

q′[w] = T[w←g]T[f←w]q[w].

Setting M = T[w←g]T[f←w] gives the entry-to-exit transformation. It can be applied to points,
vectors, or anything else that passes through the portal.

For example, in the example from the figure, this would yield the portal matrix P =
T[w←g]T[f←w] =

−1 0 0 g.x
0 1 0 g.y
0 0 −1 g.z
0 0 0 1




0 0 1 −f.z
0 1 0 −f.y
−1 0 0 f.x

0 0 0 1

 =


0 0 −1 g.x+ f.z
0 1 0 g.y − f.y
1 0 0 g.z − f.x
0 0 0 1


As a quick check of correctness, it is easy to see that multiplying this matrix times the column
vector P (f.x, f, y, f.z, 1)T = (g.x, g.y, g.z, 1)T, thus a point entering the center point of the
entry portal is mapped to the center point of the exit portal, as desired.

That’s Portal in a nutshell!
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