
CMSC 425 Dave Mount

CMSC 425: Lecture 17
Motion Planning: Basic Concepts

Reading: Today’s material comes from various sources, including “AI Game Programming Wis-
dom 2” by S. Rabin and “Planning Algorithms” by S. M. LaValle (Chapts. 4 and 5).

Recap: Previously, we discussed navigation meshes as a technique for planning the motion of
walking agents in games. In this and future lectures, we will delve deeper into the theory and
practice of motion planning as it relates to game programming.

Configuration Spaces: To begin, let us consider the problem of planning the motion of a sin-
gle agent among a collection of obstacles. Since the techniques that we will be discussing
originated in the field of robotics, henceforth we will usually refer to a moving agent as a
“robot”. The environment in which the agent operates is called its workspace, which consists
of a collection of geometric objects, called obstacles, which the robot must avoid. We will
assume that the workspace is static, that is, the obstacles do not move.1 We also assume that
a complete geometric description of the workspace is available to us.2

For our purposes, a robot will be modeled by two main elements. The first element is the
robot’s geometric model, say with respect to its reference pose (e.g., positioned at the origin).
The second is its configuration, by which we mean a finite sequence of numeric parameters
that fully specifies the position of the robot. Combined, these two elements fully define the
robot’s exact shape and position in space.

For example, suppose that the robot is a 2-dimensional polygon that can translate and rotate
in the plane (shown as a triangle in Fig. 1(a)). Its geometric representation might be given
as a sequence of vertices, relative to its reference position. Let us assume that this reference
pose overlaps the origin. We refer to the location of the origin as the robot’s reference
point. The robot’s configuration may be described by its translation, which we can take to be
the (x, y) coordinates of its reference point after translation and an angle θ that represents
the counterclockwise angle of rotation about its reference point (see Fig. 1(a)). Thus, the
configuration is given by a triple (x, y, θ). We define the space of all valid configurations
to be the robot’s configuration space. For any point p = (x, y, θ) in this space, we define
R(p) to be the corresponding placement of the robot in the workspace. The dimension of
the configuration space is sometimes referred to as the robots number of degrees of freedom
(DOF).

In 3-dimensional space, a similarly rigid object can be described by six parameters, the
(x, y, z)-coordinates of the object’s reference point, and the three Euler angles (θ, φ, ψ) that

1The assumption of a static workspace is not really reasonable for most games, since agents move and structures
may change. A common technique for dealing with dynamic environments is to separate the static objects from the
dynamic ones, plan motion with respect to the static objects, and then adjust the plan incrementally to deal with
the dynamic ones.

2The assumption of a known workspace is reasonable in computer games. Note that this is not the case in robotics,
where the world surrounding the robot is either unknown or is known only approximately based on the robots limited
sensor measurements.

Lecture 17 1 Fall 2018



CMSC 425 Dave Mount

Reference pose

R(1, 3, 0)

R(6, 2, 45◦)
45◦

R(0, 0, 0)

(a)

Reference pose

R(4, 2, 30◦, 60◦)

(b)

30◦

60◦

R(0, 0, 0, 0)

Fig. 1: Configurations of: (a) translating and rotating robot and (b) a translating and rotating
robot with a revolute joints.

define its orientation in space.)3

A more complex example would be an articulated arm consisting of a set of links, connected
to one another by a set of revolute joints. The configuration of such a robot would consist
of a vector of joint angles (see Fig. 1(b)). The geometric description would probably consist
of a geometric representation of the links. Given a sequence of joint angles, the exact shape
of the robot could be derived by combining this configuration information with its geometric
description.

Free Space: Because of limitations on the robot’s physical structure and the obstacles, not every
point in configuration space corresponds to a legal placement of the robot. Some configura-
tions may be illegal because:

• The joint angle is outside the joint’s operating range. (E.g., you can bend your knee
backwards, but not forwards . . . ouch!)

• The placement associated with this configuration intersects some obstacle (see Fig. 2(a)).

Such illegal configurations are called a forbidden configurations. Given a robot R and
workspace S, the set of all forbidden configurations is denoted Cforb(R, S), and all other place-
ments are called free configurations, and the set of these configurations is denoted Cfree(R, S),
or free space. These two sets partition configuration space into two distinct regions (see
Fig. 2(b)).

C-Obstacles and Paths in Configuration Space: Motion planning is the following problem:
Given a workspace S, a robot R, and initial and final configurations s, t ∈ Cfree(R, S), de-
termine whether it is possible to move the robot from one configuration by a path R(s) →
R(t)consisting entirely of free configurations (see Fig. 3(a)).

Based on the definition of configuration space, it is easy to see that the motion planning
problem reduces to the problem of determining whether there is a path from s to t in con-

3A quaternion might be a more reasonable representation of the robot’s angular orientation in space. You might
protest that the use of a quaternion will involve four parameters rather than three. But remember that the quaterions
used for representing rotations are unit quaternions, meaning that once three of the parameters are given, the fourth
one is fixed.

Lecture 17 2 Fall 2018



CMSC 425 Dave Mount

Free

Forbidden

Workspace

Forbidden

Configuration Space

Free

(Loosely interpreted)

Cfree(R, S)

Cforb(R, S)

(a) (b)

Fig. 2: Workspace showing free and forbidden configurations and a possible configuration space.

figuration space (as opposed to the robot’s workspace) that lies entirely within the robot’s
free configuration subspace (see Fig. 3(b)). Thus, we have reduced the task of planning the
motion of a robot in its workspace to the problem of finding a path for a single point through
free configuration space.

(a) (b)

Work space Configuration space

Fig. 3: Motion planning: (a) workspace with obstacles and (b) configuration space and C-obstacles.

Configuration Obstacles and Minkowski Sums: Since high-dimensional configuration spaces
are difficult to visualize, let’s consider the simple case of translating a convex polygonal robot
in the plane amidst a collection of polygonal obstacles. In this cased both the workspace and
configuration space are two-dimensional. We claim that, for each obstacle in the workspace,
there is a corresponding configuration obstacle (or C-obstacle) that corresponds to it in the
sense that if R(p) does not intersect the obstacle in the workspace, then p does not intersect
the corresponding C-obstacle.

For simplicity, let us assume that the reference point for our robot R is at the origin. Let R(p)
denote the translate of the robot so that its reference point lies at point p. Given a polygonal
obstacle P , the corresponding C-obstacle is formally defined to the set of placements of R

Lecture 17 3 Fall 2018



CMSC 425 Dave Mount

that intersect P , that is
C(P ) = {p : R(p) ∩ P 6= ∅}.

One way to visualize C(P ) is to imagine “scraping” R along the boundary of P and seeing
the region traced out by R’s reference point (see Fig. 4(a)).

P

Q

P ⊕Q

p

q

p + q

(b)(a)

P

R

C(P )

Fig. 4: Minkowski sum of two polygons.

Given R and P , how do we compute the configuration obstacle C(P )? To do this, we first
introduce the notion of a Minkowski sum. Let us think of points in the plane as vectors.
Given any two sets P and Q in the plane, define their Minkowski sum to be the set of all
pairwise sums of points taken from each set (see Fig. 4(b)), that is,

P ⊕Q = {p+ q : p ∈ P, q ∈ Q}.

Also, define −S = {−p : p ∈ S}. (In in the plane −S is just the 360◦ rotation of S about the
origin, but this does not hold in higher dimensions.) We introduce the shorthand notation
R⊕ p to denote R⊕ {p}. Observe that the translate of R by vector p is R(p) = R⊕ p. The
relevance of Minkowski sums to C-obstacles is given in the following claim.

Claim: Given a translating robot R and an obstacle P , C(P ) = P ⊕ (−R) (see Fig. 5).

Proof: Observe that q ∈ C(P ) iff R(q) intersects P , which is true iff there exist r ∈ R and
p ∈ P such that p = r+q (see Fig. 5(a)), which is true iff there exist −r ∈ −R and p ∈ P
such that q = p+ (−r) (see Fig. 5(b)), which is equivalent to saying that q ∈ P ⊕ (−R).
Therefore, q ∈ C(P ) iff q ∈ P ⊕ (−R), which means that C(P ) = P ⊕ (−R), as desired.

It is an easy matter to compute −R in linear time (by simply negating all of its vertices) the
problem of computing the C-obstacle C(P ) reduces to the problem of computing a Minkowski
sum of two convex polygons. We’ll show next that this can be done in O(m+n) time, where
m is the number of vertices in R and n is the number of vertices in P .

Note that the above proof made no use of the convexity of R or P . It works for any shapes
and in any dimension. However, computation of the Minkowski sums is most efficient for
convex polygons. We will not present the algorithm formally here, but here is an intuitive
explanation. First, compute the vectors associated with the edges of each polygon and merge
them into a single list, sorted by angular order. Then link them together end-to-end (see
Fig. 6). (It is not immediately obvious that this works, but it can be proved to be correct.)

Lecture 17 4 Fall 2018



CMSC 425 Dave Mount

(a) (b)

P

R

C(P )

P

−R

P ⊕ (−R)

R

p

q

r

−r

p

q

Fig. 5: Configuration obstacles and Minkowski sums.

P

Q

P ⊕Q

p

q

p + q

u1

u2

u3

v4

v1
v2

v3

u1

v1

u2 v2

u3

v3
v4

Fig. 6: Computing the Minkowski sum of two convex polygons.

C-Obstacles for Rotating Robots: When rotation is involved, this scraping process must con-
sider not only translation, but all rotations that cause the robot’s boundary to touch the
obstacle’s boundary. (One way to visualize this is to fix the value of θ, rotate the robot by
this angle, and then compute the translational C-obstacle with the robot rotated at this angle.
Then, stack the resulting C-obstacles on top of one another, as θ varies through one complete
revolution. The resulting “twisted column” is the C-obstacle in 3-dimensional space.) Note
that because the configuration space encodes not only translation, but the joint angles as
well. Thus, a path in configuration space generally characterizes both the translation and the
individual joint rotations. (This is insanely hard to illustrate, so I hope you can visualize this
on your own!)

When dealing with polyhedral robots and polyhedral obstacles models under translation,
the C-obstacles are all polyhedra as well. However, when revolute joints are involved, the
boundaries of the C-obstacles are curved surfaces, which require more effort to process than
simply polyhedral models. Complex configuration spaces are not typically used in games, due
to the complexity of processing them. Game designers often resort to more ad hoc tricks to
avoid this complexity, and the expense of accuracy.

Lecture 17 5 Fall 2018


