Overview

• Compilers are roughly divided into two parts
 ▪ Front-end — deals with surface syntax of the language
 ▪ Back-end — analysis and code generation of the output of the front-end

• Lexing and Parsing translate source code into form more amenable for analysis and code generation
• Front-end also may include certain kinds of semantic analysis, such as symbol table construction, type checking, type inference, etc.
Lexing vs. Parsing

• Language grammars usually split into two levels
 ▪ Tokens — the “words” that make up “parts of speech”
 - Ex: Identifier [a-zA-Z_]+
 - Ex: Number [0-9]+
 ▪ Programs, types, statements, expressions, declarations, definitions, etc — the “phrases” of the language
 - Ex: if (expr) expr;
 - Ex: def id(id, ..., id) expr end

• Tokens are identified by the lexer
 ▪ Regular expressions

• Everything else is done by the parser
 ▪ Uses grammar in which tokens are primitives
 ▪ Implementations can look inside tokens where needed
Lexing vs. Parsing (cont’d)

- Lexing and parsing often produce abstract syntax tree as a result
 - For efficiency, some compilers go further, and directly generate intermediate representations

- Why separate lexing and parsing from the rest of the compiler?
- Why separate lexing and parsing from each other?
Parsing theory

• Goal of parsing: Discovering a parse tree (or derivation) from a sentence, or deciding there is no such parse tree

• There’s an alphabet soup of parsers
 ▪ Cocke-Younger-Kasami (CYK) algorithm; Earley’s Parser
 - Can parse any context-free grammar (but inefficient)
 ▪ LL(k)
 - top-down, parses input left-to right (first L), produces a leftmost derivation (second L), k characters of lookahead
 ▪ LR(k)
 - bottom-up, parses input left-to-right (L), produces a rightmost derivation (R), k characters of lookahead

• We will study only some of this theory
 ▪ But we’ll start more concretely
Parsing practice

• Yacc and lex — most common ways to write parsers
 - yacc = “yet another compiler compiler” (but it makes parsers)
 - lex = lexical analyzer (makes lexers/tokenizers)

• These are available for most languages
 - bison/flex — GNU versions for C/C++
 - ocamlyacc/ocamllex — what we’ll use in this class
Example: Arithmetic expressions

• High-level grammar:
 - \(E \rightarrow E + E \mid n \mid (E) \)

• What should the tokens be?
 - Typically they are the terminals in the grammar
 - \{+, (,), n\}
 - Notice that \(n \) itself represents a set of values
 - Lexers use regular expressions to define tokens
 - But what will a typical input actually look like?

```
1 + 2 + \n ( 3 + 4 2 )
```

- We probably want to allow for whitespace
 - Notice not included in high-level grammar: lexer can discard it
- Also need to know when we reach the end of the file
 - The parser needs to know when to stop

7
Lexing with ocamllex (.mll)

```ocaml
(* Slightly simplified format *)
{ header }  
rule entrypoint = parse
   | ...  
   | regexp_n { action_n }  
and ...  
{ trailer }
```

- Compiled to .ml output file
 - header and trailer are inlined into output file as-is
 - regexps are combined to form one (big!) finite automaton that recognizes the union of the regular expressions
 - Finds longest possible match in the case of multiple matches
 - Generated regexp matching function is called entrypoint
Lexing with ocamllex (.mll)

When match occurs, generated `entrypoint` function returns value in corresponding action

- If we are lexing for `ocamlyacc`, then we’ll return tokens that are defined in the `ocamlyacc` input grammar
Example

```ocaml
{
  open Ex1_parser
  exception Eof
}
rule token = parse
  [ ' ' ' \t ' ' \r ' ] { token lexbuf } (* skip blanks *)
  | [ '\n ' ] { EOL }
  | [ '0' '-' '9' ]+ as lxm { INT(int_of_string lxm) }
  | '+' { PLUS }
  | '(' { LPAREN }
  | ')' { RPAREN }
  | eof { raise Eof }

(* token definition from Ex1_parser *)
type token =
  | INT of (int)
  | EOL
  | PLUS
  | LPAREN
  | RPAREN
```
Generated code

```ocaml
# 1 "ex1_lexer.mll" (* line directives for error msgs *)

  open Ex1_parser
  exception Eof

# 7 "ex1_lexer.ml"
let __ocaml_lex_tables = {...} (* table-driven automaton *)
let rec token lexbuf = ... (* the generated matching fn *)
```

• You don’t need to understand the generated code
 ▪ But you should understand it’s not magic
• Uses **Lexing** module from OCaml standard lib
• Notice that **token** rule was compiled to **token** fn
 ▪ Mysterious **lexbuf** from before is the argument to **token**
 ▪ Type can be examined in **Lexing** module ocamldoc
Lexer limitations

- Automata limited to 32767 states
 - Can be a problem for languages with lots of keywords

```plaintext
rule token = parse
  "keyword_1"   { ...  }
| "keyword_2"   { ...  }
| ...
| "keyword_n" { ...  }
| ['A'-'Z' 'a'-'z'] ['A'-'Z' 'a'-'z' '0'-'9' '_'] * as id
  { IDENT id}
```

- Solution?
• Now we can build a parser that works with lexemes (tokens) from token.mll
 ▪ Recall from 330 that parsers work by consuming one character at a time off input while building up parse tree
 ▪ Now the input stream will be tokens, rather than chars

 ![Input Tokens Diagram]

 ▪ Notice parser doesn’t need to worry about whitespace, deciding what’s an INT, etc
Suitability of Grammar

• Problem: our grammar is ambiguous
 - $E \rightarrow E + E \mid n \mid (E)$
 - Exercise: find an input that shows ambiguity

• There are parsing technologies that can work with ambiguous grammars
 - But they’ll provide multiple parses for ambiguous strings, which is probably not what we want

• Solution: remove ambiguity
 - One way to do this from 330:
 - $E \rightarrow T \mid E + T$
 - $T \rightarrow n \mid (E)$
Parsing with ocamlyacc (.mly)

* Compiled to .ml and .mli files
 * .mli file defines `token` type and entry point `main` for parsing
 - Notice first arg to `main` is a fn from a `lexbuf` to a `token`, i.e., the function generated from a .mll file!

```ocaml
{%
  header
%
%}
declarations
%%
rules
%%
trailer

.mly input

type token =
  | INT of (int)
  | EOL
  | PLUS
  | LPAREN
  | RPAREN

val main : (Lexing.lexbuf -> token) -> Lexing.lexbuf -> int

.mli output
```
Parsing with ocamlyacc (.mly)

- .mly file uses **Parsing** library to do most of the work
 - header and trailer copied direct to output
 - declarations lists tokens and some other stuff
 - rules are the productions of the grammar
 - Compiled to yytables; this is a table-driven parser Also include actions that are executed as parser executes
 - We’ll see an example next
Actions

• In practice, we don’t just want to check whether an input parses; we also want to do something with the result
 ▪ E.g., we might build an AST to be used later in the compiler
• Thus, each production in ocamlyacc is associated with an action that produces a result we want
• Each rule has the format
 ▪ \textit{lhs}: \textit{rhs} \{\textit{act}\}
 ▪ When parser uses a production \textit{lhs} \rightarrow \textit{rhs} in finding the parse tree, it runs the code in \textit{act}
 ▪ The code in \textit{act} can refer to results computed by actions of other non-terminals in \textit{rhs}, or token values from terminals in \textit{rhs}
Several kinds of declarations:

- `%token` — define a token or tokens used by lexer
- `%start` — define start symbol of the grammar
- `%type` — specify type of value returned by actions
Actions, in action

<table>
<thead>
<tr>
<th>INT(1)</th>
<th>PLUS</th>
<th>INT(2)</th>
<th>PLUS</th>
<th>LPAREN</th>
<th>INT(3)</th>
<th>PLUS</th>
<th>INT(42)</th>
<th>RPAREN</th>
<th>eof</th>
</tr>
</thead>
</table>

```
. 1+2+(3+42)$
term[1].+2+(3+42)$
expr[1].+2+(3+42)$
expr[3].+(3+42)$
expr[3]+(expr[45].)$
expr[48].$
main[48]
```
Actions, in action

<table>
<thead>
<tr>
<th>INT(1)</th>
<th>PLUS</th>
<th>INT(2)</th>
<th>PLUS</th>
<th>LPAREN</th>
<th>INT(3)</th>
<th>PLUS</th>
<th>INT(42)</th>
<th>RPAREN</th>
<th>eof</th>
</tr>
</thead>
</table>

```
main:
| expr EOL           { $1 } |
expr:
| term               { $1 } |
| expr PLUS term     { $1 + $3 } |
term:
| INT                { $1 } |
| LPAREN expr RPAREN { $2 } |
```

```

```

```
main[48]
expr[48]
```

```
```
Invoking lexer/parser

```ocaml
try
    let lexbuf = Lexing.from_channel stdin in
    while true do
        let result = Ex1_parser.main Ex1_lexer.token lexbuf in
        print_int result; print_newline(); flush stdout
    done
with Ex1_lexer.Eof ->
    exit 0
```

• Tip: can also use `Lexing.from_string` and `Lexing.from_function`
Terminology review

• Derivation
 - A sequence of steps using the productions to go from the start symbol to a string

• Rightmost (leftmost) derivation
 - A derivation in which the rightmost (leftmost) nonterminal is rewritten at each step

• Sentential form
 - A sequence of terminals and non-terminals derived from the start-symbol of the grammar with 0 or more reductions
 - I.e., some intermediate step on the way from the start symbol to a string in the language of the grammar

• Right- (left-)sentential form
 - A sentential form from a rightmost (leftmost) derivation

• FIRST(α)
 - Set of initial symbols of strings derived from α
Bottom-up parsing

- ocamlyacc builds a bottom-up parser
 - Builds derivation from input back to start symbol
 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

- To reduce \(\gamma_i \) to \(\gamma_{i-1} \)
 - Find production \(A \xrightarrow{} \beta \) where \(\beta \) is in \(\gamma_i \), and replace \(\beta \) with \(A \)

- In terms of parse tree, working from leaves to root
 - Nodes with no parent in a partial tree form its upper fringe
 - Since each replacement of \(\beta \) with \(A \) shrinks upper fringe, we call it a reduction.

- Note: need not actually build parse tree
 - \(|\text{parse tree nodes}| = |\text{input}| + |\text{reductions}|\)
Bottom-up parsing, illustrated

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

S ⇒* α B y ⇒ α γ y ⇒* x y

rule B → γ

Upper fringe: solid
Yet to be parsed: dashed
Bottom-up parsing, illustrated

LR(1) parsing
• Scan input left-to-right
• Rightmost derivation
• 1 token lookahead

S ⇒* α B y ⇒ α γ y ⇒* x y

rule B → γ

Upper fringe: solid
Yet to be parsed: dashed

x y
Finding reductions

- Consider the following grammar

 1. \(S \rightarrow a \ A \ B \ e \)
 2. \(A \rightarrow A \ b \ c \)
 3. \(| \ b \)
 4. \(B \rightarrow d \)

Input: abbcde

<table>
<thead>
<tr>
<th>Sentential Form</th>
<th>Production</th>
<th>Position</th>
</tr>
</thead>
<tbody>
<tr>
<td>abbcde</td>
<td>3</td>
<td>2</td>
</tr>
<tr>
<td>aAbcde</td>
<td>2</td>
<td>4</td>
</tr>
<tr>
<td>aAde</td>
<td>4</td>
<td>3</td>
</tr>
<tr>
<td>aABe</td>
<td>1</td>
<td>4</td>
</tr>
<tr>
<td>S</td>
<td>N/A</td>
<td>N/A</td>
</tr>
</tbody>
</table>

- How do we find the next reduction?
 - How do we do this efficiently?
Handles

• Goal: Find substring β of tree’s frontier that matches some production $A \rightarrow \beta$
 - (And that occurs in the rightmost derivation)
 - Informally, we call this substring β a *handle*

• Formally,
 - A *handle* of a right-sentential form γ is a pair $(A \rightarrow \beta, k)$ where
 - $A \rightarrow \beta$ is a production and k is the position in γ of β’s rightmost symbol.
 - If $(A \rightarrow \beta, k)$ is a handle, then replacing β at k with A produces the right sentential form from which γ is derived in the rightmost derivation.
 - Because γ is a right-sentential form, the substring to the right of a handle contains only terminal symbols
 - \Rightarrow the parser doesn’t need to scan past the handle (only lookahead)
Example

• Grammar

1. $S \rightarrow E$
2. $E \rightarrow E + T$
3. $| E - T$
4. $| T$
5. $T \rightarrow T * F$
6. $| T / F$
7. $| F$
8. $F \rightarrow n$
9. $| id$
10. $| (E)$

<table>
<thead>
<tr>
<th>Production</th>
<th>Sentential Form</th>
<th>Handle (prod,k)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>S</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>E</td>
<td>1,1</td>
</tr>
<tr>
<td>3</td>
<td>$E-T$</td>
<td>3,3</td>
</tr>
<tr>
<td>5</td>
<td>$E-T*F$</td>
<td>5,5</td>
</tr>
<tr>
<td>9</td>
<td>$E-T*id$</td>
<td>9,5</td>
</tr>
<tr>
<td>7</td>
<td>$E-F*id$</td>
<td>7,3</td>
</tr>
<tr>
<td>8</td>
<td>$E-n*id$</td>
<td>8,3</td>
</tr>
<tr>
<td>4</td>
<td>$T-n*id$</td>
<td>4,1</td>
</tr>
<tr>
<td>7</td>
<td>$F-n*id$</td>
<td>7,1</td>
</tr>
<tr>
<td>9</td>
<td>id-n*id</td>
<td>9,1</td>
</tr>
</tbody>
</table>

Handles for rightmost derivation of $id-n*id$
Finding reductions

• Theorem: If G is unambiguous, then every right-sentential form has a unique handle
 - If we can find those handles, we can build a derivation!

• Sketch of Proof:
 - G is unambiguous \implies rightmost derivation is unique
 - \implies a unique production $A \to \beta$ applied to derive γ_i from γ_{i-1}
 - and a unique position k at which $A \to \beta$ is applied
 - \implies a unique handle $(A \to \beta,k)$

• This all follows from the definitions
Bottom-up handle pruning

- **Handle pruning**: discovering handle and reducing it
 - Handle pruning forms the basis for bottom-up parsing
- So, to construct a rightmost derivation

 \[S \Rightarrow \gamma_0 \Rightarrow \gamma_1 \Rightarrow \gamma_2 \Rightarrow \ldots \Rightarrow \gamma_{n-1} \Rightarrow \gamma_n \Rightarrow \text{input} \]

- Apply the following simple algorithm

  ```
  for i ← n to 1 by −1
  Find handle \((A_i \rightarrow \beta_i , k_i)\) in \(\gamma_i\)
  Replace \(\beta_i\) with \(A_i\) to generate \(\gamma_{i-1}\)
  ```

 - This takes \(2n\) steps
Shift-reduce parsing algorithm

- Maintain a stack of terminals and non-terminals matched so far
 - Rightmost terminal/non-terminal on top of stack
 - Since we’re building rightmost derivation, will look at top elements of stack for reductions

```
push INVALID
token ← next_token()
repeat until (top of stack = Goal and token = EOF)
  if the top of the stack is a handle A→β
    then // reduce β to A
      pop |β| symbols off the stack
      push A onto the stack
  else if (token ≠ EOF)
    then // shift
      push token
      token ← next_token()
  else // need to shift, but out of input
    report an error
```

Potential errors
- Can’t find handle
- Reach end of file
Example

- Grammar

1. S → E
2. E → E + T
3. | E - T
4. | T
5. T → T * F
6. | T / F
7. | F
8. F → n
9. | id
10. | (E)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Handle (prod,k)</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>id-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>id</td>
<td>-n*id</td>
<td>9,1</td>
<td>reduce 9</td>
</tr>
<tr>
<td>F</td>
<td>-n*id</td>
<td>7,1</td>
<td>reduce 7</td>
</tr>
<tr>
<td>T</td>
<td>-n*id</td>
<td>4,1</td>
<td>reduce 4</td>
</tr>
<tr>
<td>E</td>
<td>-n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-</td>
<td>n*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-n</td>
<td>*id</td>
<td>8,3</td>
<td>reduce 8</td>
</tr>
<tr>
<td>E-F</td>
<td>*id</td>
<td>7,3</td>
<td>reduce 7</td>
</tr>
<tr>
<td>E-T</td>
<td>*id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*</td>
<td>id</td>
<td>none</td>
<td>shift</td>
</tr>
<tr>
<td>E-T*id</td>
<td></td>
<td>9,5</td>
<td>reduce 9</td>
</tr>
<tr>
<td>E-T*F</td>
<td></td>
<td>5,5</td>
<td>reduce 5</td>
</tr>
<tr>
<td>E-T</td>
<td></td>
<td>3,3</td>
<td>reduce 3</td>
</tr>
<tr>
<td>E</td>
<td></td>
<td>1,1</td>
<td>reduce 1</td>
</tr>
<tr>
<td>S</td>
<td>none</td>
<td>accept</td>
<td></td>
</tr>
</tbody>
</table>
Parse tree for example
Algorithm actions

• Shift-reduce parsers have just four actions
 - **Shift** — next word is shifted onto the stack
 - **Reduce** — right end of handle is at top of stack
 - Locate left end of handle within the stack
 - Pop handle off stack and push appropriate lhs
 - **Accept** — stop parsing and report success
 - **Error** — call an error reporting/recovery routine

• Cost of operations
 - **Accept** is constant time
 - **Shift** is just a push and a call to the scanner
 - **Reduce** takes $|\text{rhs}|$ pops and 1 push
 - If handle-finding requires state, put it in the stack $\Rightarrow 2x$ work
 - **Error** depends on error recovery mechanism
Finding handles

• To be a handle, a substring of sentential form γ must:
 ▪ Match the right hand side β of some rule $A \rightarrow \beta$
 ▪ There must be some rightmost derivation from the start symbol that produces γ with $A \rightarrow \beta$ as the last production applied
 ▪ \Rightarrow Looking for rhs’s that match strings is not good enough

• How can we know when we have found a handle?
 ▪ LR(1) parsers use DFA that runs over stack and finds them
 - One token look-ahead determines next action (shift or reduce) in each state of the DFA.
 ▪ A grammar is LR(1) if we can build an LR(1) parser for it
 ▪ LR(0) parsers: no look-ahead
LR(1) parsing

- Can use a set of tables to describe LR(1) parser

- ocamlyacc automates the process of building the tables
 - Standard library Parser module interprets the tables
- LR parsing invented in 1965 by Donald Knuth
- LALR parsing invented in 1969 by Frank DeRemer
LR(1) parsing algorithm

- Two tables
 - ACTION: reduce/shift/accept
 - GOTO: state to be in after reduce
- Cost
 - |input| shifts
 - |derivation| reductions
 - One accept
- Detects errors by failure to shift, reduce, or accept

```plaintext
stack.push(INVALID); stack.push(s0);
not_found = true;
token = scanner.next_token();
do while (not_found) {
    s = stack.top();
    if ( ACTION[s,token] == "reduce A→β" ) {
        stack.popnum(2*|β|); // pop 2*|β| symbols
        s = stack.top();
        stack.push(A);
        stack.push(GOTO[s,A]);
    }
    else if ( ACTION[s,token] == "shift s_i" ) {
        stack.push(token); stack.push(s_i);
        token ← scanner.next_token();
    }
    else if ( ACTION[s,token] == "accept" && token == EOF )
        not_found = false;
    else report a syntax error and recover;
}
report success;
```
Example parser table

- `ocamlyacc -v ex1_parser.mly` — produce `.output` file with parser table

<table>
<thead>
<tr>
<th>state</th>
<th>action</th>
<th>goto</th>
<th>productions</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>.</td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>1</td>
<td>s3</td>
<td>s4</td>
<td>acc 6 7 entry → . main</td>
</tr>
<tr>
<td>2</td>
<td>r4</td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>3</td>
<td>s3</td>
<td>s4</td>
<td>term → INT .</td>
</tr>
<tr>
<td>4</td>
<td>s3</td>
<td>s4</td>
<td>8 7 term → (. expr)</td>
</tr>
<tr>
<td>5</td>
<td>r2</td>
<td></td>
<td>(special)</td>
</tr>
<tr>
<td>6</td>
<td>s9</td>
<td>s10</td>
<td>main → expr . EOL</td>
</tr>
<tr>
<td>7</td>
<td>r1</td>
<td></td>
<td>expr → term .</td>
</tr>
<tr>
<td>8</td>
<td>s10</td>
<td>s11</td>
<td>expr → expr . + term</td>
</tr>
<tr>
<td>9</td>
<td>r1</td>
<td></td>
<td>main → expr EOL .</td>
</tr>
<tr>
<td>10</td>
<td>s3</td>
<td>s4</td>
<td>12 expr → expr + . term</td>
</tr>
<tr>
<td>11</td>
<td>r5</td>
<td></td>
<td>term → (expr .)</td>
</tr>
<tr>
<td>12</td>
<td>r3</td>
<td></td>
<td>expr → expr + term .</td>
</tr>
</tbody>
</table>

NB: Numbers in shift refer to state numbers

Numbers in reduction refer to production numbers
Example parse (N+N+N)

<table>
<thead>
<tr>
<th>Stack</th>
<th>Input</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>N+N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1, N, 3</td>
<td>+N+N</td>
<td>r4</td>
</tr>
<tr>
<td>1, term, 7</td>
<td>+N+N</td>
<td>r2</td>
</tr>
<tr>
<td>1, expr, 6</td>
<td>+N+N</td>
<td>s10</td>
</tr>
<tr>
<td>1, expr, 6, +, 10</td>
<td>N+N</td>
<td>s3</td>
</tr>
<tr>
<td>1, expr, 6, +, 10, N, 3</td>
<td>+N</td>
<td>r4</td>
</tr>
<tr>
<td>1, expr, 6, +, 10, term, 12</td>
<td>+N</td>
<td>r3</td>
</tr>
<tr>
<td>1, expr, 6</td>
<td>+N</td>
<td>s10</td>
</tr>
<tr>
<td>1, expr, 6, +, 10</td>
<td>N</td>
<td>s3</td>
</tr>
<tr>
<td>1, expr, 6, +, 10, N, 3</td>
<td>r4</td>
<td></td>
</tr>
<tr>
<td>1, expr, 6, +, 10, term, 12</td>
<td>r3</td>
<td></td>
</tr>
<tr>
<td>1, expr, 6</td>
<td></td>
<td>s9</td>
</tr>
<tr>
<td>1, expr, 6, EOL, 9</td>
<td></td>
<td>r1</td>
</tr>
<tr>
<td>accept</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Example parser table (cont’d)

• Notes
 - Notice derivation is built up (bottom to top)
 - Table only contains kernel of each state
 - Apply closure operation to see all the productions in the state

• LR(1) parsing requires start symbol not on any rhs
 - Thus, ocamlyacc actually adds another production
 - %entry% → \001 main
 - (so the acc in the previous table is a slight fib)

• Values returned from actions stored on the stack
 - Reduce triggers computation of action result
Why does this work?

• Stack = upper fringe
 - So all possible handles on top of stack
 - Shift inputs until top elements of stack form a handle

• Build a handle-recognizing DFA
 - Language of handles is regular
 - ACTION and GOTO tables encode the DFA
 - Shift = DFA transition
 - Reduce = DFA accept
 - New state = GOTO[state at top of stack (after pop), lhs]

• If we can build these tables, grammar is LR(1)
LR(k) items

• An LR(k) item is a pair \([P, \delta]\), where
 - \(P\) is a production \(A \rightarrow \beta\) with a \(\cdot\) at some position in the rhs
 - \(\delta\) is a lookahead string of length \(\leq k\) (words or $)
 - The \(\cdot\) in an item indicates the position of the top of the stack

• LR(1):
 - \([A \rightarrow \cdot \beta \gamma, a]\) — input so far consistent with using \(A \rightarrow \beta \gamma\) immediately after symbol on top of stack
 - \([A \rightarrow \beta \cdot \gamma, a]\) — input so far consistent with using \(A \rightarrow \beta \gamma\) at this point in the parse, and parser has already recognized \(\beta\)
 - \([A \rightarrow \beta \gamma \cdot, a]\) — parser has seen \(\beta \gamma\), and lookahead of a consistent with reducing to \(A\)

• LR(1) items represent valid configurations of an LR(1) parser; DFA states are sets of LR(1) items
LR(k) items, cont’d

• Ex: \(A \rightarrow BCD\) with lookahead a can yield 4 items
 - \([A \rightarrow \bullet BCD, a], [A \rightarrow B \bullet CD, a], [A \rightarrow BC \bullet D, a], [A \rightarrow BCD \bullet, a]\)
 - Notice: set of LR(1) items for a grammar is finite

• Carry lookaheads along to choose correct reduction
 - Lookahead has no direct use in \([A \rightarrow \beta \bullet \gamma, a]\)
 - In \([A \rightarrow \beta \bullet, a]\), a lookahead of \(a \Rightarrow\) reduction by \(A \rightarrow \beta\)
 - For \{ \([A \rightarrow \beta \bullet, a], [B \rightarrow \gamma \bullet \delta, b]\) \}
 - Lookahead of \(a \Rightarrow\) reduce to \(A\)
 - FIRST(\(\delta\)) \Rightarrow shift
 - (else error)
LR(1) table construction

- States of LR(1) parser contain sets of LR(1) items
 - Initial state s0
 - Assume S’ is the start symbol of grammar, does not appear in rhs
 - (Extend grammar if necessary to ensure this)
 - $s0 = \text{closure}([S’ \rightarrow \star S,\$])$ ($\$ = \text{EOF}$)
 - For each sk and each terminal/non-terminal X, compute new state $\text{goto}(sk,X)$
 - Use $\text{closure}()$ to “fill out” kernel of new state
 - If the new state is not already in the collection, add it
 - Record all the transitions created by $\text{goto}()$
 - These become ACTION and GOTO tables
 - i.e., the handle-finding DFA
 - This process eventually reaches a fixpoint
Closure()

- \([A \rightarrow \beta \cdot B\delta, a]\) implies \([B \rightarrow \cdot \gamma, x]\) for each production with \(B\) on lhs and each \(x \in \text{FIRST}(\delta a)\)
 - (If you’re about to see a \(B\), you may also see a \(\gamma\))

```
Closure( s )
while ( s is still changing )
  \(\forall\) items \([A \rightarrow \beta \cdot B\delta, a] \in s\) \hspace{1cm} // item with \(\cdot\) to left of nonterminal \(B\)
  \(\forall\) productions \(B \rightarrow \gamma \in P\) \hspace{1cm} // all productions for \(B\)
  \(\forall\) \(b \in \text{FIRST}(\delta a)\) \hspace{1cm} // tokens appearing after \(B\)
  if \([B \rightarrow \cdot \gamma, b] \not\in s\) \hspace{1cm} // form LR(1) item w/ new lookahead
    then add \([B \rightarrow \cdot \gamma, b]\) to \(s\) \hspace{1cm} // add item to \(s\) if new
```

- Classic fixed-point method
- Halts because \(s \subseteq \text{ITEMS}\) (worklist version is faster)
 - Closure “fills out” a state
Example — closure with LR(0)

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T+E \\
| & \quad T \\
T & \rightarrow \text{id}
\end{align*}
\]

\[
\begin{array}{c}
[S \rightarrow \cdot E] \\
[E \rightarrow \cdot T+E] \\
[E \rightarrow \cdot T] \\
[T \rightarrow \cdot \text{id}]
\end{array}
\]

[kernel item]
[derived item]
Example — closure with LR(1)

$$S \rightarrow E$$

$$E \rightarrow T+E$$

$$\mid T$$

$$T \rightarrow \text{id}$$

- [kernel item]
- [derived item]

- [S $\rightarrow \cdot E$, $]$
- [E $\rightarrow \cdot T+E$, $]$
- [E $\rightarrow \cdot T$, $]$
- [T $\rightarrow \cdot \text{id}$, $+]$
- [T $\rightarrow \cdot \text{id}$, $]$

- [E $\rightarrow \cdot T+\cdot E$, $]$
- [E $\rightarrow \cdot T+E$, $]$
- [E $\rightarrow \cdot T$, $]$
- [T $\rightarrow \cdot \text{id}$, $+]$
- [T $\rightarrow \cdot \text{id}$, $]$
Goto

- **Goto**\((s, x)\) computes the state that the parser would reach if it recognized an \(x\) while in state \(s\)
 - **Goto**\(\{ [A \rightarrow \beta \cdot X \delta, a] \}, X \) produces \([A \rightarrow \beta X \cdot \delta, a]\)
 - Should also includes **Closure**\([A \rightarrow \beta X \cdot \delta, a]\)

```plaintext
Goto( s, X )
  new ← Ø
  ∀ items [A → β·Xδ,a] ∈ s // for each item with · to left of X
    new ← new ∪ [A → βX·δ,a] // add item with · to right of X
  return closure(new) // remember to compute closure!
```

- Not a fixed-point method!
- Straightforward computation
- Uses closure()
- Goto() moves forward
Example — goto with LR(0)

S → E
E → T+E
| T
T → id

[S → E •]
[E → T • +E]
[E → T •]
[T → id •]

[kernel item]
[derived item]
Example — goto with LR(1)

\[
\begin{align*}
S & \rightarrow E \\
E & \rightarrow T+E \\
\mid & \quad T \\
T & \rightarrow \text{id}
\end{align*}
\]
Building parser states

\[
\begin{align*}
cc_0 & \leftarrow \text{closure (} [S' \rightarrow \cdot S, \$]) \\
CC & \leftarrow \{ cc_0 \} \\
\text{while (new sets are still being added to } CC) \\
\text{for each unmarked set } cc_j \in CC \\
\text{mark } cc_j \text{ as processed} \\
\text{for each } x \text{ following a } \cdot \text{ in an item in } cc_j \\
\text{temp } & \leftarrow \text{goto}(cc_j, x) \\
\text{if temp } \not\in CC \\
\text{then } CC & \leftarrow CC \cup \{ \text{temp} \} \\
\text{record transitions from } cc_j \text{ to temp on } x
\end{align*}
\]

- \(CC = \) canonical collection (of LR(k) items)
- Fixpoint computation (worklist version)
- Loop adds to \(CC \)
 - \(CC \subseteq 2^{\text{ITEMS}}, \) so \(CC \) is finite
Example LR(0) states

S → E
E → T+E
| T
T → id

[S → • E]
[E → • T+E]
[E → • T]
[T → • id]

[E → T • +E]

[T → id •]

[E → T •]

[E → T + • E]

[E → • T+E]

[E → • T]

[T → • id]
Example LR(1) states

S → E
E → T+E
| T
T → id

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T •, $]

[T → id •, +]
[T → id •, $]

[E → T + • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[E → T + E •, $]
Building ACTION and GOTO tables

∀ set $s_x \in S$

∀ item $i \in s_x$

- If i is $[A \rightarrow \beta \cdot b, a]$ and $\text{goto}(s_x, a) = s_k$, $a \in \text{terminals}$ // • to left of terminal a

 then $\text{ACTION}[x, a] \leftarrow \text{“shift } k\text{”} \quad \text{// ⇒ shift if lookahead = } a$

- Else if i is $[S' \rightarrow S \cdot , s]$

 then $\text{ACTION}[x, s] \leftarrow \text{“accept”} \quad \text{// ⇒ accept if lookahead = s}$

- Else if i is $[A \rightarrow \beta \cdot , a]$

 then $\text{ACTION}[x, a] \leftarrow \text{“reduce } A \rightarrow \beta\text{”} \quad \text{// ⇒ production done}$

∀ $n \in \text{nonterminals}$

- If $\text{goto}(s_x, n) = s_k$

 then $\text{GOTO}[x, n] \leftarrow k \quad \text{// store transitions for nonterminals}$

- Many items generate no table entry

 - e.g., $[A \rightarrow \beta \cdot B\alpha, a]$ does not, but closure ensures that all the rhs’s for B are in sx
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(T \)
4. \(T \rightarrow \text{id} \)

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td>acc</td>
<td>1</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td>5</td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\[
\begin{align*}
\text{S0} & : [S \rightarrow \cdot E, \$] \\
& : [E \rightarrow \cdot T+E, \$] \\
& : [E \rightarrow \cdot T, \$] \\
& : [T \rightarrow \cdot \text{id}, +] \\
& : [T \rightarrow \cdot \text{id}, \$] \\
\text{S1} & : [S \rightarrow E \cdot, \$] \\
\text{S2} & : [E \rightarrow T \cdot +E, \$] \\
& : [E \rightarrow T \cdot, \$] \\
\text{S3} & : [T \rightarrow \text{id} \cdot, +] \\
& : [T \rightarrow \text{id} \cdot, \$] \\
\text{S4} & : [E \rightarrow T + \cdot E, \$] \\
& : [E \rightarrow \cdot T+E, \$] \\
& : [E \rightarrow \cdot T, \$] \\
& : [T \rightarrow \cdot \text{id}, +] \\
& : [T \rightarrow \cdot \text{id}, \$] \\
\text{S5} & : [E \rightarrow T + E \cdot, \$] \\
\end{align*}
\]
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| \ T \)
4. \(T \rightarrow \text{id} \)

Entries for shift

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
</tr>
<tr>
<td>S1</td>
<td></td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
</tr>
<tr>
<td>S3</td>
<td></td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
</tr>
<tr>
<td>S5</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>S0</th>
<th>[S \rightarrow \cdot E, $]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>[E \rightarrow \cdot T+E, $]</td>
</tr>
<tr>
<td></td>
<td>[E \rightarrow \cdot T, $]</td>
</tr>
<tr>
<td></td>
<td>[T \rightarrow \cdot \text{id}, +]</td>
</tr>
<tr>
<td></td>
<td>[T \rightarrow \cdot \text{id}, $]</td>
</tr>
</tbody>
</table>

| S1 | [S \rightarrow E \cdot, $] |

| S2 | [E \rightarrow T \cdot +E, $] |
| | [E \rightarrow T \cdot, $] |

| S3 | [T \rightarrow \text{id} \cdot, +] |
| | [T \rightarrow \text{id} \cdot, $] |

S4	[E \rightarrow T+ \cdot E, $]
	[E \rightarrow \cdot T+E, $]
	[E \rightarrow \cdot T, $]
	[T \rightarrow \cdot \text{id}, +]
	[T \rightarrow \cdot \text{id}, $]

| S5 | [E \rightarrow T + E \cdot, $] |
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| T \)
4. \(T \rightarrow \text{id} \)

ACTION and GOTO tables

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>(id)</td>
<td>(+)</td>
</tr>
<tr>
<td>(S0)</td>
<td>(s3)</td>
</tr>
<tr>
<td>(S1)</td>
<td></td>
</tr>
<tr>
<td>(S2)</td>
<td>(s4)</td>
</tr>
<tr>
<td>(S3)</td>
<td>(r4)</td>
</tr>
<tr>
<td>(S4)</td>
<td>(s3)</td>
</tr>
<tr>
<td>(S5)</td>
<td></td>
</tr>
</tbody>
</table>

Entry for accept
Ex ACTION and GOTO tables

1. \(S \rightarrow E \)
2. \(E \rightarrow T+E \)
3. \(| \ T \)
4. \(T \rightarrow \text{id} \)

<table>
<thead>
<tr>
<th></th>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>+</td>
<td>$</td>
</tr>
<tr>
<td>S0</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S1</td>
<td></td>
<td>acc</td>
</tr>
<tr>
<td>S2</td>
<td>s4</td>
<td>r3</td>
</tr>
<tr>
<td>S3</td>
<td>r4</td>
<td>r4</td>
</tr>
<tr>
<td>S4</td>
<td>s3</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td></td>
<td>r2</td>
</tr>
</tbody>
</table>

Entries for reduce

\[
\begin{align*}
[S & \rightarrow \cdot E, \$] \\
[E & \rightarrow \cdot T+E, \$] \\
[E & \rightarrow \cdot T, \$] \\
[T & \rightarrow \cdot \text{id}, +] \\
[T & \rightarrow \cdot \text{id}, \$]
\end{align*}
\]

\[
\begin{align*}
[S & \rightarrow E \cdot, \$] \\
[T & \rightarrow id \cdot, +] \\
[T & \rightarrow id \cdot, \$]
\end{align*}
\]

\[
\begin{align*}
[E & \rightarrow T \cdot +E, \$] \\
[E & \rightarrow T \cdot, \$]
\end{align*}
\]

\[
\begin{align*}
[E & \rightarrow T + \cdot E, \$] \\
[E & \rightarrow \cdot T+E, \$] \\
[E & \rightarrow \cdot T, \$] \\
[T & \rightarrow \cdot \text{id}, +] \\
[T & \rightarrow \cdot \text{id}, \$] \\
[E & \rightarrow T + E \cdot, \$]
\end{align*}
\]
Ex ACTION and GOTO tables

1. $S → E$
2. $E → T+E$
3. $| T$
4. $T → id$

<table>
<thead>
<tr>
<th>ACTION</th>
<th>GOTO</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>S</td>
</tr>
<tr>
<td>$+$</td>
<td>$+$</td>
</tr>
<tr>
<td>E</td>
<td>$s3$</td>
</tr>
<tr>
<td>E</td>
<td>acc</td>
</tr>
<tr>
<td>E</td>
<td>$s4$</td>
</tr>
<tr>
<td>E</td>
<td>$r3$</td>
</tr>
<tr>
<td>T</td>
<td>$r4$</td>
</tr>
<tr>
<td>T</td>
<td>$r4$</td>
</tr>
<tr>
<td>T</td>
<td>$r2$</td>
</tr>
<tr>
<td>T</td>
<td>$s3$</td>
</tr>
<tr>
<td>E</td>
<td>$+$</td>
</tr>
</tbody>
</table>

Entries for GOTO

[S → • E, $]
[E → • T+E, $]
[E → • T, $]
[T → • id, +]
[T → • id, $]

[S → • E, $]
What can go wrong?

- What if set s contains $[A \rightarrow \beta \cdot ay, b]$ and $[B \rightarrow \beta \cdot, a]$?
 - First item generates “shift”, second generates “reduce”
 - Both define $\text{ACTION}[s,a]$ — cannot do both actions
 - This is a shift/reduce conflict

- What if set s contains $[A \rightarrow \gamma \cdot, a]$ and $[B \rightarrow \gamma \cdot, a]$?
 - Each generates “reduce”, but with a different production
 - Both define $\text{ACTION}[s,a]$ — cannot do both reductions
 - This is called a reduce/reduce conflict

- In either case, the grammar is not LR(1)
Shift/reduce conflict

- Associativity unspecified
 - Ambiguous grammars always have conflicts
 - But, some non-ambiguous grammars also have conflicts
Solving conflicts

• Refactor grammar
• Specify operator precedence and associativity

%left PLUS MINUS /* lowest precedence */
%left TIMES DIV /* medium precedence */
%nonassoc UMINUS /* highest precedence */

- Lots of details here
 - See “12.4.2 Declarations” at

- When comparing operator on stack with lookahead
 - Shift if lookahead has higher prec OR same prec, right assoc
 - Reduce if lookahead has lower prec OR same prec, left assoc

- Can use smaller, simpler (ambiguous) grammars
 - Like the one we just saw
Left vs. right recursion

- Right recursion
 - Required for termination in top-down parsers
 - Produces right-associative operators

- Left recursion
 - Works fine in bottom-up parsers
 - Limits required stack space
 - Produces left-associative operators

- Rule of thumb
 - Left recursion for bottom-up parsers
 - Right recursion for top-down parsers
Reduce/reduce conflict (1)

- Often these conflicts suggest a serious problem
 - Here, there's a deep ambiguity
Reduce/reduce conflict (2)

%token <int> INT
%token EOL PLUS LPAREN RPAREN
%start main /* the entry point */
%type <int> main
%
main:
 | expr EOL { $1 }
expr:
 | term1 { $1 }
 | term1 PLUS PLUS expr { $1 + $4 }
 | term2 PLUS expr { $1 + $3 }
term1 :
 | INT { $1 }
 | LPAREN expr RPAREN { $2 }
term2 :
 | INT { $1 }

• Grammar not ambiguous, but not enough lookahead to distinguish last two expr productions
Shrinking the tables

• Combine terminals
 ▪ E.g., number and identifier, or + and -, or * and /
 - Directly removes a column, may remove a row

• Combine rows or columns (*table compression*)
 ▪ Implement identical rows once and remap states
 ▪ Requires extra indirection on each lookup
 ▪ Use separate mapping for ACTION and for GOTO

• Use another construction algorithm
 ▪ LALR(1) used by ocamlyacc
LALR(1) parser

• Define the core of a set of LR(1) items as
 ▪ Set of LR(0) items derived by ignoring lookahead symbols

 ![LR(1) state][LALR(1) parser]

 ![Core][LALR(1) parser]

• LALR(1) parser merges two states if they have the same core

• Result
 ▪ Potentially much smaller set of states
 ▪ May introduce reduce/reduce conflicts
 ▪ Will not introduce shift/reduce conflicts
LALR(1) example

• Introduces reduce/reduce conflict
 - Can reduce either $E \rightarrow a$ or $A \rightarrow ba$ for lookahead = b
LALR(1) vs. LR(1)

• Example grammar

```
S' → S
S  → aAd | bBd | aBe | bAe
A → c
B → c
```

• LR(0) ?

• LR(1) ?

• LALR(1) ?
LR(k) Parsers

- Properties
 - Strictly more powerful than LL(k) parsers
 - Most general non-backtracking shift-reduce parser
 - Detects error as soon as possible in left-to-right scan of input
 - Contents of stack are viable prefixes
 - Possible for remaining input to lead to successful parse
Error handling (lexing)

- What happens when input not handled by any lexing rule?
 - An exception gets raised
 - Better to provide more information, e.g.,

```plaintext
rule token = parse
...
| _ as lxm { Printf.printf "Illegal character %c" lxm;
failwith "Bad input" }
```

- Even better, keep track of line numbers
 - Store in a global-ish variable (oh no!)
 - Increment as a side effect whenever \n recognized
Error handling (parsing)

• What happens when parsing a string not in the grammar?
 - Reject the input
 - Do we keep going, parsing more characters?
 - May cause a cascade of error messages
 - Could be more useful to programmer, if they don’t need to stop at the first error message (what do you do, in practice?)

• Ocamlyacc includes a basic error recovery mechanism
 - Special token error may appear in rhs of production
 - Matches erroneous input, allowing recovery
• If unexpected input appears while trying to match `expr`, match token to `error`
 ▪ Effectively treats token as if it is produced from `expr`
 ▪ Triggers error action
• If unexpected input appears while trying to match term, match tokens to error
 - Pop every state off the stack until LPAREN on top
 - Scan tokens up to RPAREN, and discard those, also
 - Then match error production
Error recovery in practice

• A very hard thing to get right!
 ▪ Necessarily involves guessing at what malformed inputs you may see

• How useful is recovery?
 ▪ Compilers are very fast today, so not so bad to stop at first error message, fix it, and go on
 ▪ On the other hand, that does involve some delay

• Perhaps the most important feature is good error messages
 ▪ Error recovery features useful for this, as well
 ▪ Some compilers are better at this than others
OCamlyacc tip

- Setting OCAMLRUNPARAM=p will cause the parsing steps to be printed out as the parser runs.
- (And setting OCAMLRUNPARAM=b will tell OCaml to print a stack backtrace for any thrown exceptions.)
Real programming languages

• Essentially all real programming languages don’t quite work with parser generators
 ▪ Even Java is not quite LALR(1)

• Thus, real implementations play tricks with parsing actions to resolve conflicts

• In-class exercise: C typedefs and identifier declarations/definitions
Additional Parsing Technologies

• For a long time, parsing was a “dead” field
 ▪ Considered solved a long time ago

• Recently, people have come back to it
 ▪ LALR parsing can have unnecessary parsing conflicts
 ▪ LALR parsing tradeoffs more important when computers were slower and memory was smaller

• Many recent new (or new-old) parsing techniques
 ▪ GLR — generalized LR parsing, for ambiguous grammars
 ▪ LL(*) — ANTLR
 ▪ Packrat parsing — for parsing expression grammars
 ▪ etc...

• The input syntax to many of these looks like yacc/lex
Designing language syntax

• Idea 1: Make it look like other, popular languages
 ▪ Java did this (OO with C syntax)

• Idea 2: Make it look like the domain
 ▪ There may be well-established notation in the domain (e.g., mathematics)
 ▪ Domain experts already know that notation

• Idea 3: Measure design choices
 ▪ E.g., ask users to perform programming (or related) task with various choices of syntax, evaluate performance, survey them on understanding
 - This is very hard to do!

• Idea 4: Make your users adapt
 ▪ People are really good at learning...