CMSC 430 – Compilers
Fall 2018

PL: A Whirlwind Tour
Semantics and Foundations
Program Semantics

• To analyze programs, we must know what they mean
 ▪ Semantics comes from the Greek semaino, “to mean”

• Most language semantics informal. But we can do better by making them formal. Two main styles:
 ▪ Operational semantics (major focus)
 - Like an interpreter
 ▪ Denotational semantics
 - Like a compiler
 ▪ Axiomatic semantics
 - Like a logic
Denotational Semantics

• The meaning of a program is defined as a mathematical object, e.g., a function or number

• Typically define an interpretation function $⟦ ⟧$
 - Meaning of program fragment (arg) in a given state
 - E.g., $⟦ x+4 ⟧_σ = 7$
 - $σ$ is the state — a map from variables to values
 - Here $σ(x) = 3$

• Gets interesting when we try to find denotations of loops or recursive functions
Denotational Semantics Example

- \(b ::= \text{true} | \text{false} | b \lor b | b \land b | e = e \)
- \(e ::= 0 | 1 | \ldots | x | e + e | e \cdot e \)
- \(s ::= e | x := e | \text{if } b \text{ then } s \text{ else } s | \text{while } b \text{ do } s \)

Semantics (booleans):

- \(\llbracket \text{true} \rrbracket_\sigma = \text{true} \)
- \(\llbracket b_1 \lor b_2 \rrbracket_\sigma = \begin{cases} \text{true} & \text{if } \llbracket b_1 \rrbracket_\sigma = \text{true} \text{ or } \llbracket b_2 \rrbracket_\sigma = \text{true} \\ \text{false} & \text{otherwise} \end{cases} \)
- \(\llbracket e_1 = e_2 \rrbracket_\sigma = \begin{cases} \text{true} & \text{if } \llbracket e_1 \rrbracket_\sigma = \llbracket e_2 \rrbracket_\sigma \\ \text{false} & \text{otherwise} \end{cases} \)
Denotational Semantics cont’d

- $\llbracket x \rrbracket_\sigma = \sigma(x)$

- $\llbracket x := e \rrbracket_\sigma = \sigma[x \mapsto \llbracket e \rrbracket_\sigma]$

 (remap x to $\llbracket e \rrbracket_\sigma$ in σ)

- $\llbracket \text{if} \ b \ \text{then} \ s1 \ \text{else} \ s2 \ \text{end} \rrbracket = \begin{cases}
 \llbracket s1 \rrbracket_\sigma & \text{if } \llbracket b \rrbracket_\sigma = \text{true} \\
 \llbracket s2 \rrbracket_\sigma & \text{if } \llbracket b \rrbracket_\sigma = \text{false}
\end{cases}$
Complication: Recursion

- The denotation of a loop is decomposed into the denotation of the loop itself
 \[
 \llbracket \text{while } b \text{ do } s \text{ end} \rrbracket \sigma = \begin{cases}
 \llbracket s; \text{while } b \text{ do } s \text{ end} \rrbracket \sigma & \text{if } \llbracket b \rrbracket \sigma = \text{true} \\
 \sigma & \text{if } \llbracket b \rrbracket \sigma = \text{false}
 \end{cases}
 \]
 - Recursive functions introduce a similar problem
- Solution: Denotation not in terms of sets of values, but as complete partial orders (CPOs).
 - Poset with some additional properties. Dana Scott (CMU) applied these to PL semantics (Scott domains)
 - Ensures we can always solve the recursive equation
Applications

• More powerful than operational semantics in some applications, notably *equational reasoning*

 - The Foundational Cryptography Framework (probabilistic programs)
 - http://adam.petcher.net/papers/FCF.pdf

 - A Semantic Account of Metric Preservation (privacy)
 - https://www.cis.upenn.edu/~aarthur/metcpo.pdf

 - Basic Reasoning (equivalence)
Axiomatic Semantics

- $\{P\} S \{Q\}$
 - If statement S is executed in a state satisfying precondition P, then S will terminate, and Q will hold of the resulting state
 - Partial correctness: ignore termination

- Such Hoare triples proved via set of rules
 - Rules proved sound WRT denotational or operational semantics

Can use as a basic for automated reasoning!
Proofs of Hoare Triples

• Example rules

 - **Assignment:** \(\{Q[E\rightarrow x]\} \ x := E \ {Q} \)

 - **Conditional:**

 \[
 \frac{\{P \land B\} \ S1 \ {Q} \quad \{P \land \neg B\} \ S2 \ {Q}}{\{P\} \text{ if } B \text{ then } S1 \text{ else } S2 \ {Q}}
 \]

• Example proof (simplified)

 \[
 \begin{align*}
 \{y>3\} \ x := y \ {x>3} & \quad \{\neg(y>3)\} \ x := 4 \ {x>3} \\
 \{\ \} \text{ if } y>3 \text{ then } x := y \text{ else } x := 4 \ {x>3}
 \end{align*}
 \]
Extensions

• Separation logic
 ▪ For reasoning about the heap in a modular way
 ▪ Contrasts with rules due to John McCarthy

• “modifies” clauses for method calls, side effects

• Dijkstra monads
 ▪ Extends Hoare-style reasoning to functional programs (i.e., those with functions that can take functions as arguments)

• Rely-guarantee reasoning for multiple threads
Automated Reasoning
Static Program Analysis

- Method for proving properties about a program’s executions
 - Works by analyzing the program without running it
- Static analysis can prove the absence of bugs
 - Testing can only establish their presence
- Many techniques
 - Abstract interpretation
 - Dataflow analysis
 - Symbolic execution
 - Type systems, …
Soundness and Completeness

• Suppose a static analysis S attempts to prove property R of program P
 ▪ E.g., R = “program has no run-time failures”
 ▪ $S(P) = \text{true}$ implies P has no run-time failures

• An analysis is **sound** iff
 ▪ for all P, if $S(P) = \text{true}$ then P exhibits R

• An analysis is **complete** iff
 ▪ for all P, if P exhibits R then $S(P) = \text{true}$

Abstract Interpretation

• Rice’s Theorem: Any non-trivial program property is undecidable
 ▪ Never sound and complete. Talk about intractable …

• Need to make some kind of approximation
 ▪ Abstract the behavior of the program
 ▪ ...and then analyze the abstraction in a sound way
 - Proof about abstract program —> proof of real one
 - I.e., sound (but not complete)

• Seminal papers: Cousot and Cousot, 1977, 1979
Example

\[e ::= n \mid e + e \]

Abstract semantics:

\[
\begin{array}{c|cccc}
+ & - & 0 & + \\
- & - & - & ? \\
0 & - & 0 & + \\
+ & ? & + & + \\
\end{array}
\]

- Notice the need for ? value
 - Arises because of the abstraction
Abstract Domains, and Semantics

• Many abstractions possible
 - **Signs** (previous slide)
 - **Intervals**: \(\alpha(n) = [l,u] \) where \(l \leq n \leq u \)
 - \(l \) can be \(-\infty\) and \(u \) can be \(+\infty\)
 - **Convex polyhedra**: \(\alpha(\sigma) = \) affine formula over variables in domain of \(\sigma \), e.g., \(x \leq 2y + 5 \)
 - where \(\sigma \) is a state mapping variables to numbers
 - *relational* domain

• Abstract semantics for standard PL constructs
 - Assignments, sequences, loops, conditionals, etc.
Applications: Abstract Interpretation

 - Detects all possible runtime failures (divide by zero, null pointer deref, array bounds) on embedded code
 - Used regularly on Airbus avionics software

- **RacerD (Facebook)** https://fbinfer.com/docs/racerd.html
 - Uses Infer.AI framework to reason about memory and pointer use in Java, C, Objective C programs
 - In particular, looks for data races
 - Neither sound nor complete, but very effective
Dataflow Analysis

- Classic style of program analysis
- Used in optimizing compilers
 - Constant propagation
 - Common sub-expression elimination
 - Loop unrolling and code motion
- Efficiently implementable
 - At least, *intraprocedurally* (within a single proc.)
 - Use bit-vectors, fixpoint computation
Relating Dataflow and AbsInterp

• Abstract interpretation was originally developed as a formal justification for data flow analysis

• As such, mechanics are similar:
 ▪ Abstract domain, organized as a lattice
 ▪ Transfer functions = abstract semantics
 ▪ Fixed point computation
 - “join” at terminus of conditional, while
 - iterate until abstract state unchanged
Symbolic Execution

• Testing works
 ▪ But, each test only explores one possible execution
 - assert(f(3) == 5)
 ▪ We hope test cases generalize, but no guarantees

• Symbolic execution generalizes testing
 ▪ Allows unknown symbolic variables in evaluation
 - y = α; assert(f(y) == 2*y-1);
 ▪ If execution path depends on unknown, conceptually fork symbolic executor
 - int f(int x) { if (x > 0) then return 2*x - 1; else return 10; }
Relating SymExe and AbsInterp

• Symbolic execution is a kind of abstract interpretation, where
 ▪ Abstract domain may not be a lattice (includes concrete elements)
 - so no guarantee of termination
 - No joins at control merge points
 - again, challenges termination
 • But lack of termination permits completeness
 ▪ No correct program is implicated falsely
Applications: Symbolic Execution

• SAGE (Microsoft)
 - Used as a fuzz tester to find buffer overruns etc. in file parsers. Now industrial product

• KLEE (Imperial), Angr (UCSB), Triton (Inria), ...
 - Research systems used to enforce security specifications, find vulnerabilities, explore configuration spaces, and more
Abstracting Abstract Machines

• Instead of abstracting a normal programming language, we can abstract its abstract machine
 ▪ E.g., a CESK machine, or SECD machine
• This can be done systematically
• Great tutorial at https://dvanhorn.github.io/redex-aam-tutorial/
Type Systems

• A type system is
 ▪ a tractable syntactic method for proving the absence of certain program behaviors by classifying phrases according to the kinds of values they compute. --Pierce

• They are good for
 ▪ Detecting errors (don’t add an integer and a string)
 ▪ Abstraction (hiding representation details)
 ▪ Documentation (tersely summarize an API)

• Designs trade off efficiency, readability, power
Simply-typed λ-calculus

\[\begin{align*}
e & ::= x \mid n \mid \lambda x:\tau.e \mid e \; e \\
\tau & ::= \text{int} \mid \tau \rightarrow \tau \\
A & ::= \cdot \mid A, x:\tau
\end{align*}\]

- \(A \vdash e : \tau\) in type environment \(A\), expression \(e\) has type \(\tau\)

- \(A \vdash n : \text{int}\)

- \(A, x:A(x) \vdash x \in \text{dom}(A)\)

- \(A, \tau:x \vdash e : \tau'\)

- \(A \vdash \lambda x:\tau.e : \tau \rightarrow \tau'\)

- \(A \vdash e1 : \tau \rightarrow \tau'\)

- \(A \vdash e2 : \tau\)

- \(A \vdash e1 \; e2 : \tau'\)
Type Safety

• If $\vdash e : \tau$ then either
 ▪ there exists a value v of type τ such that $e \rightarrow^* v$, or
 ▪ e diverges (doesn’t terminate)

• Corollary: e will never get “stuck”
 ▪ never evaluates to a normal form that is not a value
 ▪ i.e., sound (but not complete)

• Proof by induction on the typing derivation
Type Inference

• Given a bare term (with no type annotations), can we reconstruct a valid typing for it, or show that it has no valid typing?
 - Introduce type vars, constraints: solve

\[
A, x: \alpha \vdash e : t' \quad \alpha \text{ fresh}
\]

\[
\frac{}{A \vdash \lambda x.e : \alpha \to t'}
\]

\[
A \vdash e_1 : t_1 \quad A \vdash e_2 : t_2
\]

\[
t_1 = t_2 \to \beta \quad \beta \text{ fresh}
\]

\[
A \vdash e_1 e_2 : \beta
\]

“Generated” constraint
Scaling up

• Type inference works well in limited settings
 ▪ Hindley-Milner (polymorphic) type inference in ML seems to be a sweet spot

• The more fancy the type language, the more difficult it gets to do well
 ▪ Higher-order functions and subtyping, dependent types, linear types, …
 - Full polymorphic type inference (System F) undecidable

• Connection:
 ▪ Whole-program type inference = static analysis
Types, Types, Types, Oh my!

- Sums $\tau_1 + \tau_2$
- Products $\tau_1 \times \tau_2$
- Unions $\tau_1 \cup \tau_2$
- Intersections $\tau_1 \cap \tau_2$
- References $\tau \text{ ref}$
- Recursive types $\mu \alpha.\tau$
- Universals $\forall \alpha.\tau$
- Existentials $\exists \alpha.\tau$
- Dependent functions $\Pi x: \tau_1.\tau_2$
- Dependent products $\Sigma x: \tau_1.\tau_2$

\[
\alpha \text{ list } = \forall \alpha.\mu \beta.\text{unit} + (\alpha \times \beta)
\]
Refinement Types

• Normal types accompanied by logical formula to refine the set of legal values

• Example: \(\{ \text{n:int} \mid \text{n} \geq 0 \} \)
 - Type for non-negative integers
 - This is a kind of dependent type (next)

• Present in several languages
 - Liquid Haskell, F*
Dependent Types

• Useful for expressing properties of programs
 - \([1;2;3] : \text{int list}\)
 - \([1;2;3] : \text{int } 3 \text{ list}\)
 - append: ‘a \text{m list} -> ‘a \text{m list} -> ‘a (\text{m+n} \text{ list})

• The above types are encoded using the primitive concepts above (plus a little more)

• Gives stronger assurances of correct usage
 - Prove impossibility of run-time match failures
Dependent Types for Verification

- Dependent types form a practical foundation for the concept of **propositions as types**
 - A **type** = a logical **proposition**
 - A **program** P with a **type** T = **proof** of the **proposition** corresponding to T
 - So: if P : T then **proof** of **proposition** is correct
 - Type checking is proof checking!

- Foundation of proof systems in Coq and Agda
 - coq.inria.fr
\[
\frac{M : A \quad N : B}{\langle M, N \rangle : A \times B} \quad \times\text{-I} \quad \frac{L : A \times B}{\pi_1 L : A} \quad \times\text{-E}_1 \quad \frac{L : A \times B}{\pi_2 L : B} \quad \times\text{-E}_2
\]

\[
[x : A]^x \\
\vdots \\
N : B \\
\frac{}{\lambda x. N : A \to B} \quad \text{-I}^x
\]

\[
\frac{L : A \to B \quad M : A}{LM : B} \quad \to\text{-E}
\]

Figure 5. Alonzo Church (1935) — Lambda Calculus

\[
\frac{[z : B \times A]^z}{\pi_2 z : A} \quad \times\text{-E}_2 \quad \frac{[z : B \times A]^z}{\pi_1 z : B} \quad \times\text{-E}_1
\]

\[
\frac{}{\langle \pi_2 z, \pi_1 z \rangle : A \times B} \quad \times\text{-I}
\]

\[
\frac{}{\lambda z. \langle \pi_2 z, \pi_1 z \rangle : (B \times A) \to (A \times B)} \quad \text{-I}^z
\]

Figure 6. A program

Verification Systems

• Verified software
 ▪ CompCert compiler
 - developed and proved correct in Coq
 ▪ Everest TLS infrastructure
 - developed and proved correct in F*
 ▪ Liquid Haskell (smaller scale)
• Verified mathematical developments (many)
 ▪ E.g., encode type system, semantics, etc. and perform the proof in Coq, LH, Agda, etc.
Applications: Solver-aided languages

• Dafny (Microsoft)
 ▪ Can perform deep reasoning about programs
 - Array out-of-bounds, null pointer errors, failure to satisfy internal invariants; based Hoare logic
 ▪ Employs the **Z3 SMT solver**
 ▪ Ironclad project: https://www.microsoft.com/en-us/research/project/ironclad/

• Long line of other tools, e.g., Spec# (Microsoft), F* (Microsoft), ESC/Java (many)
Goodness Properties by Typing

• Formulate an operational semantics for which violation of a useful property results in a stuck state. Eg,

 ▪ The program **divides by zero**, dereferences a **null pointer**, accesses an **array out of bounds**

 ▪ A thread attempts to **dereference a pointer without holding a lock** first

 ▪ The program **uses tainted data** (potentially from an adversary) where untainted data expected (e.g., as a format string)

• Then formulate a type system that enforces the property, and prove type safety
Linear Types for Safe Memory

• Garbage collection is used by most languages to help ensure type safety
 ▪ But it can add memory overhead, excessive pause times, and general overhead

• Manual memory management is faster, but a frequent source of bugs
 ▪ Use-after-free bugs, (some) memory leaks

• Idea: Enforce correct use of manual memory management through the type system
Rust

• Actively developed by Mozilla

• *Ownership* in Rust =~ linearity

 ▪ Only one variable can own a free-able resource
 ▪ Assignment transfers ownership
 ▪ Temporary aliasing allowed within a limited program scope; called borrowing

 - https://rustbyexample.com/scope/borrow.html
fn destroy_box(c: Box<i32>) {
 println!("Destroying a box that contains {}", c);
 // `c` is destroyed and the memory freed
}

fn main() {
 // _Stack_ allocated integer
 let x = 5u32;

 // *Copy* `x` into `y` - no resources are moved
 let y = x;

 // Both values can be independently used
 println!("x is {}, and y is {}", x, y);

 // `a` is a pointer to a _heap_ allocated integer
 let a = Box::new(5i32);

 println!("a contains: {}", a);

 // *Move* `a` into `b`
 let b = a;
 // The pointer address of `a` is copied (not the data) into `b`.
 // Both are now pointers to the same heap allocated data, but
 // `b` now owns it.

 // Error! `a` can no longer access the data, because it no longer owns the
 // heap memory
 //println!("a contains: {}", a);
 // TODO ^ Try uncommenting this line

 // This function takes ownership of the heap allocated memory from `b`
 destroy_box(b);

 // Since the heap memory has been freed at this point, this action would
 // result in dereferencing freed memory, but it's forbidden by the compiler
 // Error! Same reason as the previous Error
 //println!("b contains: {}", b);
 // TODO ^ Try uncommenting this line
}
Proof of Soundness

• Operational semantics wherein memory is tagged with whether it’s valid or not
 ▪ Freeing memory makes it invalid
 ▪ We use memory once—ignore recycling

• Whenever a pointer is dereferenced, check that the target in memory is valid; stuck if not

• Type safety: non-stuckness implies no freed memory is ever used
Dynamic Enforcement

• Implement “monitoring” semantics via literally, via instrumentation
 ▪ Accepts more (all!) programs. Defers error checks to run-time (which adds overhead)

• Many examples
 ▪ Phosphor for Java (taint analysis)
 ▪ Recent work by Nguyen and Van Horn: Dynamically monitor size-change, which correlates with termination
 - Amazing: Flag non-terminating program at run-time!
Secure Information Flow

- Secure information flow (secrecy)
 - password: secret int, guess: public int
 - type system ensures secret values can’t be inferred by observing public values

- Dual: Avoiding undue influence (integrity)
 - user_pass: tainted string, db_query: untainted string
 - Make sure that tainted data does not get used where untainted data is required
Kinds of Information Flows

- How can information flow from H to L?
- **Direct flows**

```plaintext
h := l;
\( x := l; \ y := x; \ h := y; \)
```

- **Implicit flows**

```plaintext
h := h \mod 2;
l := 0;
if h == 1 then l := 1 else skip
```

- The low order bit of h was copied through the pc!
Preventing Explicit Flows

- Goal: Build a program analysis that will prevent flows from high security inputs to low security outputs
 - But first, let’s generalize from just two security levels (high, low) to many

- Security labels:
 - Lattice \((S, \leq)\)
 - \(S\) is the set of labels
 - \(s_1 \leq s_2\) if \(s_1\) allowed to flow to \(s_2\)
 - e.g., \(\text{let } f (x:s_2) = \ldots \text{ in } f (y:s_1)\)
 - confidentiality: \(s_1\) is “less secret” than \(s_2\)
 - integrity: \(s_1\) is “more trusted” than \(s_2\)
Preventing Explicit Flows by Typing

• Build a type system that rejects programs with bad explicit flows
 – \(e ::= x \mid e \text{ op } e \mid n \)
 – \(c ::= \text{skip} \mid x := e \mid \text{if } e \text{ then } c_1 \text{ else } c_2 \mid \text{while } e \text{ do } c \)
 – \(t ::= \text{int } S \) \(\text{types tagged with security level} \)
 – \(A : \text{vars} \rightarrow t \)
Preventing Explicit Flows (cont’d)

\[
\begin{align*}
A & \vdash x : t \\
& \quad \vdash x : A(x) & \quad \vdash n : \text{int } S \\
& \quad \vdash e \text{ : int } S & \quad \vdash c_1 \\
& \quad \vdash c_2 \\
& \quad \vdash \text{if } e \text{ then } c_1 \text{ else } c_2 \\
& \quad \vdash \text{while } (e) \text{ do } c \\
& \quad \vdash e \text{ : int } S & \quad A(x) = \text{int } S' \quad S \leq S'
\end{align*}
\]
Notes

• Here we assume all variables have some type in A at the beginning of execution
 – So, essentially this type systems checks whether the annotations in A are correct
• Lets L be assigned to H, but not vice-versa (see assignment rule)
• Can be generalized to other types aside from int
 – See type qualifiers papers
• Does not prevent implicit flows
 – Nothing interesting going on for if, while
Proof of Soundness

• Develop an operational semantics that tags data with its security label, and likewise tags storage/channels
 – Track tags through program operations (using \sqcup operator)
 – When storing data, or writing to a channel, make sure tags are compatible; if not program is stuck
 – Similar to Perl, Ruby, etc. taint mode

• Prove that a type-correct program never gets stuck
Implicit Flows

• Intuition: The program counter conveys sensitive information if we branch on a high-security value

```c
if h > 0 then l := 1 else l := 0;
```

• Slightly more complicated: information flow depends both on what is done and what is not done

```c
l := 0;
if h > 0 then l := 1 else skip;
```

– Fortunately, we are doing static analysis, so we can look at both branches
– Much harder in a dynamic setting!
Preventing Implicit Flows (cont’d)

\[
\begin{align*}
A \vdash x & : A(x) \\
\text{(same as before)} & \\
A \vdash x & : A(x) \\
A \vdash n & : \text{int } S
\end{align*}
\]

\[
\begin{align*}
A \vdash e & : \text{int } S1 \\
A \vdash e & : \text{int } S2
\end{align*}
\]

\[
\begin{align*}
A \vdash e & : \text{int } S \\
A(x) = \text{int } S’ & \\
S \sqcup S_{pc} \leq S’
\end{align*}
\]

\[
\begin{align*}
A \vdash e & : \text{int } S \\
A, S_{pc} \vdash x := e
\end{align*}
\]

\[
\begin{align*}
A \vdash e & : \text{int } S \\
A, S_{pc} \sqcup S \vdash c1 \\
A, S_{pc} \sqcup S \vdash c2
\end{align*}
\]

\[
\begin{align*}
A, S_{pc} \vdash \text{if } e \text{ then } c1 \text{ else } c2
\end{align*}
\]

\[
\begin{align*}
A \vdash e & : \text{int } S \\
A, S_{pc} \sqcup S \vdash c
\end{align*}
\]

\[
\begin{align*}
A, S_{pc} \vdash \text{while } (e) \text{ do } c
\end{align*}
\]
Application to Java

• Jif (Java+Information Flow)
 - Annotate standard types with additional security labels, where type correctness implies correct protection of sensitive data

• Jif is at the core of a number of other projects too
 - Fabric framework, for cloud computing
 - Civitas, secure remote voting system
Application to Haskell

• LIO (Labeled IO)
 ▪ Only reference cells are labeled directly
 ▪ Current expression protected by an ambient “current label”
 ▪ Attempts at IO are checked against the current label

• LWeb: Extension of LIO to web applications
 ▪ Need to protect data stored in DB properly

Proof of Security

• The property that we have no explicit flows is not strong enough for real security.

• Want a property called **noninterference**
 - No matter what the secret values are, the publicly visible ones do not change
 - I.e., secret values do not interfere with visible ones

• Proof is more involved
 - Involves a *logical relation* which defines an equivalence on terms that are indistinguishable to the adversary
Alternatives to Pure Static Typing

• Dynamic Types (Cardelli – CFPL 1985)
 - Dynamic-typed values pair typed values with their type
 - Dynamic values in typed positions check type at run-time

• Soft Typing (Cartwright, Fagan – PLDI 1991)
 - Adds explicit run-time checks where typechecker cannot prove type correctness
 - Allows running possibly ill-typed programs

• Gradual Typing — many examples today
 - Parallel work
 - Focuses on providing sister typed and untyped languages
 - Allows interaction between typed and untyped modules
Gradual Typing Enforcement

• Static types can be used as a compile-time bug-finder, with no run-time effect
 ▪ Relies on underlying language semantics

• … or as a way of designating where type checking should take place
 ▪ I.e., at the boundary between typed/untyped code
 ▪ Creates interesting complication for higher-values based between typed/untyped code
 - Whom to blame when something goes wrong?
Gradual Type Soundness

In a gradual typing system, type soundness looks something like the following:

For all programs, if the typed parts are well-typed, then evaluating the program either

1. produces a value,
2. diverges,
3. produces an error that is not caught by the type system (e.g., division by zero),
4. produces a run-time error in the untyped code, or
5. produces a contract error that blames the untyped code.
Gradual Typing Examples

- Flow (Facebook), Typescript (Microsoft)
 - https://flow.org/
 - https://www.typescriptlang.org/

- Dart (Google)
 - https://www.dartlang.org/dart-2

- Typed Racket (academic)
 - https://docs.racket-lang.org/ts-guide/
Checked C

- Started at Microsoft Research ~2 years ago
 - https://github.com/Microsoft/checkedc
- Focus is on annotations to enforce bounds safety
- Backward compatible with existing C
 - Like gradual (migratory) typing, but no extra checks
- Mechanized proof of blame property in Coq
 - Failures can be blamed on unchecked code
 - Specially designated checked regions of code are internally sound
 - So: Make as many of these as possible
Program Synthesis

Find a program P that meets a spec $\phi(input, output)$:

$\exists P \forall x. \phi(x, P(x))$

When to use synthesis:

productivity: when writing ϕ is faster than writing P

correctness: when proving ϕ is easier than proving P
Contracts

• Assertions about inputs/outputs to functions
 ▪ In a sense, a kind of refinement type

• Connection to types brings in connections to automated reasoning
 ▪ Prove contracts will always hold (so-called contract verification), and remove those that do
 ▪ Enforce those that remain similarly to gradual typing

• Interesting work here at UMD by David Van Horn and Phil Nguyen
Preparing your language for synthesis

Extend the language with two constructs

spec:
```c
int foo (int x) {
    return x + x;
}
```

sketch:
```c
int bar (int x) implements foo {
    return x << ??;
}
```

result:
```c
int bar (int x) implements foo {
    return x << 1;
}
```

Instead of `implements`, assertions over safety properties can be used.
Synthesis from partial programs

Examples: Sketch (C), JSketch (Java), Flashfill (Excel!)
Probabilistic Programming

- Programs operate on random and/or noisy values
- Can interpret such a program as a distribution
 - Each run of the program is a sample from the distribution
- Technical problem: How to get a representation of that distribution to perform inference?
Estimated Glomular Filtration Rate

```haskell
real estimateLogEGFR(real logScr, int age,
                      bool isFemale, bool isAA) {
  var k, alpha: real;
  var f: real;
  f = 4.94;
  if (isFemale) {
    k = -0.357;
    alpha = -0.329;
  } else {
    k = -0.105;
    alpha = -0.411;
  }

  if (logScr < k) {
    f = alpha * (logScr - k);
  } else {
    f = -1.209 * (logScr - k);
  }

  f = f - 0.007 * age;

  if (isFemale) f = f + 0.017;
  if (isAA) f = f + 0.148;
  return f;
}
```
Estimating the possible error

Can do this by applying Bayesian machine learning
Many programming languages

- Anglican
- Church
- Fun (with Infer.NET)
- IBAL
- Probabilistic Scheme
- BUGS
- HANSEI
- Factorie
- ...

68
Other Technologies and Topics

• Lots of other connections between PL and ML
 ▪ Automatic differentiation — better languages than Tensorflow
 ▪ ML for program analysis directly, and for prioritizing alarms

• Performance/feature enhancement
 ▪ Better run-times, GCs, language features, compilers (auto-parallelization!),

• Debugging … oh my!
Conclusion

• PL has a great mix of theory and practice
 - Very deep theory
 - But lots of practical applications

• Recent exciting new developments
 - Focus on program correctness (and security)
 - instead of speed
 - Scalability to large programs
 - In greater use in mainstream development