COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

N-gram Language Models

CMSC 470
Marine Carpuat

Slides credit: Jurasky & Martin

Roadmap

* Language Models
* Our first example of modeling sequences

* n-gram language models
* How to estimate them?
* How to evaluate them?
* Neural models

Probabilistic Language Models

* Goal: assign a probability to a sentence
e Why?

Machine Translation:
* P(high winds tonite) > P(large winds tonite)

Spell Correction
* The office is about fifteen minuets from my house

* P(about fifteen minutes from) > P(about fifteen minuets from)

Speech Recognition
* P(l saw a van) >> P(eyes awe of an)

+ Summarization, question-answering, etc., etc.!!

Probabilistic Language Modeling

* Goal: compute the probability of a sentence or sequence of words
P(W) = P(wy,wW,,W3,W,,Wc..W,)

e Related task: probability of an upcoming word
P(w:|wy,w,,w;,w,)

* A model that computes either of these:

P(W) or P(w,|w,w,..w,_,)

is called a language model.

How to compute P(W)

* How to compute this joint probability:

* P(its, water, is, so, transparent, that)

* Intuition: let’s rely on the Chain Rule of Probability

Recall: Zipt’s Law

* George Kingsley Zipf (1902-1950) observed the following relation
between frequency and rank

C f =frequency

fr:C or f:_ r = rank

I ¢ = constant

* Example

e the 50th most common word should occur three times more often than the
150th most common word

Recall: Zipt’s Law

100000

10000

frequency
1000

100

10

1 10 100 1000 10000 100000

rank

Graph illustrating Zipf’s Law for the Brown corpus

from Manning and Shitze

Reminder: The Chain Rule

e Recall the definition of conditional probabilities
p(B|A) = P(A,B)/P(A) Rewriting: P(A,B) = P(A)P(B|A)

* More variables:
P(A,B,C,D) = P(A)P(B|A)P(C|A,B)P(D|A,B,C)

e The Chain Rule in General
P(X{,X5,X5,...,X,,) = P(X7)P(X, | X{)P(X5]X1,X5)...P(X,, | Xq, 0%, 1)

The Chain Rule applied to compute joint probability of
words in sentence

Pww, - w,) = Or (W, [wyw, - w,4)

l

P(“its water is so transparent”) =
P(its) x P(water|its) x P(is|its water)
x P(so|its water is)
x P(transparent]|its water is so)

How to estimate these probabilities

* Could we just count and divide?

P(the | its water Is so transparent that) =
Count (1ts water Is so transparent that the)

Count(Its water Is so transparent that)

* No! Too many possible sentences!

* We'll never see enough data for estimating these

Markov Assumption

* Simplifying assumption:

Andrei Markov

P(the |its water Is so transparent that) » P(the |that)

* Or maybe

P(the |its water Is so transparent that) » P(the |transparent that)

Markov Assumption

P(wpw, - w,)» OPw, |w_, - w,_)
i
* In other words, we approximate each component in the product

P (Wi ‘Wlwz Wi—l) » P (Wi ‘Wi—k Wi—l)

Unigram model (1-gram)

P(wpw, - w,)» OP(w)

Some automatically generated sentences from a unigram model

an, 1incorporated, a,

fifth, an, of, futures, the,
quarter, 1in, 1is,

a, the, inflation, most, dollars,

mass
thrift, did, eighty, said, hard, 'm, july, bullish

that, or, limited, the

Bigram model (2-gram)

Condition on the previous word:

P (Wi |W1W2 Wi—l) » P (Wi |Wi—1)

texaco, rose, one, 1in, this, 1issue, 1s, pursuling, growth,
a, boiler, house, said, mr., gurria, mexico, 's, motion,

control, proposal, without, permission, from, five,
fifty, five, yen

outside, new, car, parking, lot, of, the, agreement,

this, would, be, a, record, november

hundred,

reached

N-gram models

* We can extend to 3-grams (“trigrams”), 4-grams, 5-grams

* In general this is an insufficient model of language
* because language has long-distance dependencies:

“The computer which | had just put into the machine room on the ground floor
crashed.”

* But we can often get away with N-gram models

Estimating bigram probabilities

e The Maximum Likelihood Estimate

count(w,_,,w,)

Pw.|w..)=
(l‘ l—l) COunt(Wl._l)

P(w, |w,,) = C(VZW v;z-)

Example 1: Estimating bigram probabilities on
toy corpus

<s>|am Sam </s> Plw)= c(w_,w)
<s>Sam | am </s> il "Wi-1
. / c(w,_4)
<s> | do not like green eggs and ham </s>
(I|<s>) :%: 67 P(Sam|<s>)=1=.33 P(am|I)=3%=.67
({/S.‘}\Sam): P(Sam|am)=1=5 P(do|I)=3=.33

Example 2: Estimating bigram probabilities on
Berkeley Restaurant Project sentences

9222 sentences in total

Examples

e can you tell me about any good cantonese restaurants close by

mid priced thai food is what i'm looking for

tell me about chez panisse

* can you give me a listing of the kinds of food that are available

i’m looking for a good place to eat breakfast

when is caffe venezia open during the day

e Qut of 9222 sentences

Raw bigram counts

1 want | to eat chinese | food | lunch | spend
1 5 827 0 9 0 0 0 2
want 2 0 608 1 6 6 5 1
to 2 0 4 686 | 2 0 6 211
eat 0 0 2 0 16 2 42 0
chinese 1 0 0 0 0 82 1 0
food 15| 0 15 0 1 4 0 0
lunch 2 0 0 0 0 1 0 0
spend 1 0 1 0 0 0 0 0

Raw bigram probabilities

* Normalize by unigrams:

e Result:

1 want to eat chinese food lunch spend
2533 927 2417 746 158 1093 341 278
1 want | to eat chinese | food lunch | spend

1 0.002 033 (0 0.0036| 0 0 0 0.00079

want 0.0022 | 0 0.66 0.0011 | 0.0065 | 0.0065 | 0.0054 | 0.0011

to 0.00083 | 0 0.0017] 0.28 0.00083 | O 0.0025 | 0.087

eat 0 0 0.00271 0 0.021 0.002710.056 |0

chinese || 0.0063 | 0 0 0 0 0.52 0.0063 | 0

food 0.014 0 0.014 |0 0.00092 | 0.0037 | 0O 0

lunch 0.0059 | 0O 0 0 0 0.0029 | O 0

spend 0.0036 | O 0.0036 | O 0 0 0 0

Using bigram model to compute sentence
probabilities

P(<s> | want english food </s>) =
P(1]<s>)
x P(want]|l)
x P(english|want)
x P(food|english)
x P(</s>|food)
= .000031

What kinds of knowledge?

* P(english|want) =.0011
* P(chinese|want) = .0065
* P(to|want) = .66

e P(eat | to) =.28

* P(food | to) =0

* P(want | spend) =0
*P(i| <s>)=.25

Google N-Gram Release, August 2006

e All Our N-gram are Belong to You
Posted by Alex Franz and Thorsten Brants, Google Machine Translation Team

Here at Google Research we have been using word n-gram models for a variety of R&D projects,

That's why we decided to sh;are fhis enormous dataset _with everyone. We prbcess_ed 1.024.908.26?.229 _words
of running text and are publishing the counts for all 1,176,470,663 five-word seguences that appear at least 40
times. There are 13,588,391 unique words, after discarding words that appear less than 200 times.

Google N-Gram Release

* serve as the incoming 92

* serve as the incubator 99

* serve as the independent 794

* serve as the index 223

* serve as the indication 72

* serve as the indicator 120

* serve as the 1ndicators 45

* serve as the 1ndispensable 111
* serve as the indispensible 40
* serve as the 1ndividual 234

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

http://googleresearch.blogspot.com/2006/08/all-our-n-gram-are-belong-to-you.html

Problem: Zeros

* Training set:

.. C

oo O
oo O
oo O

P(“offer” | denied the) =0

enieo
eniec
eniec

eniec

~ ~+ ~+ ~+

ne allegations
ne reports
ne claims

ne request

e Test set
... denied the offer
... denied the loan

Smoothing: the intuition

* When we have sparse statistics:

P(w | denied the)
3 allegations

)
2 reports « =
1 claims S < o
= cU 5 " = =
1 request T £ B
7 total

» Steal probability mass to generalize better

P(w | denied the)

2.5 allegations e o
.0 c
1.5 reports B ” ¢
: w || £ O < 3
0.5 claims s |Ffs] & g £
© o || E g 2 € 3 ===
0.5 request || ® = © o
2 other & =] [] [1
7 total

From Dan Klein

Add-one estimation

* Also called Laplace smoothing

* Pretend we saw each word one more time than we did (i.e. just add
one to all the counts)

C (Wi—l’ Wi)

P, (w|w._)=
* MLE estimate: ML : C(Wi—l)

C(Wi—l’ Wi) +1
C(Wi—l) +V

e Add-1 estimate: PAdd—l(Wi |Wi-1) -

Berkeley Restaurant Corpus:
Laplace smoothed bigram counts

1 want | to eat chinese food | lunch spend
1 6 828 1 10 1 1 1 3
want 3 1 609 | 2 7 7 6 2
to 3 1 5 687 | 3 1 7 212
eat 1 1 1 17 3 43 1
chinese 2 1 1 | | 83 2 1
food 16 1 16 1 2 5 1 1
lunch 3 1 1 1 1 2 1 1
spend 2 1 2 1 1 1 1 1

P*(W;-;‘Wn—l) —

Laplace-smoothed bigrams

C(Wn—l Wﬁ) +1

C (Wn—1) +V

1 want to eat chinese | food lunch spend
1 0.0015 0.21 0.00025| 0.0025 0.00025| 0.00025| 0.00025| 0.00075
want 0.0013 0.00042| 0.26 0.00084 | 0.0029 0.0029 0.0025 0.00084
to 0.00078| 0.00026| 0.0013 0.18 0.00078 | 0.00026| 0.0018 0.055
eat 0.00046| 0.00046| 0.0014 0.00046| 0.0078 0.0014 0.02 0.00046
chinese || 0.0012 0.00062| 0.00062| 0.00062| 0.00062| 0.052 0.0012 0.00062
food 0.0063 0.00039| 0.0063 0.00039| 0.00079| 0.002 0.00039 | 0.00039
lunch 0.0017 0.00056| 0.00056| 0.00056| 0.00056| 0.0011 0.00056 | 0.00056
spend 0.0012 0.00058| 0.0012 0.00058 | 0.00058 | 0.00058 | 0.00058 | 0.00058

c* (Wﬁ—l Wﬁ.) —

Reconstituted counts

[Cwp_1wy) +1] xC(wy,_1)

C(Wﬁ—l) +V

1 want to eat chinese | food| lunch| spend
| 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 44 133
eat 0.34| 0.34 1 0.34 5.8 1 15 0.34
chinese || 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32| 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Reconstituted vs.
raw bigram counts

1 want | to eat chinese | food | lunch | spend

1 5 827 0 9 0 0 0 2

want 2 0 608 1 6 6 5 1

to 2 0 4 686 | 2 0 6 211

eat 0 0 2 0 16 2 42 0

chinese 1 0 0 0 0 82 1 0

food 15 0 15 0 1 4 0 0

lunch 2 0 0 0 0 1 0 0

spend 1 0 1 0 0 0 0 0

1 want to eat chinese | food| lunch| spend

1 3.8 527 0.64 6.4 0.64 0.64| 0.64 1.9
want 1.2 0.39 238 0.78 2.7 2.7 2.3 0.78
to 1.9 0.63 3.1 430 1.9 0.63| 4.4 133
eat 0.34] 0.34 1 0.34 5.8 1 15 0.34
chinese 0.2 0.098(0.098| 0.098| 0.098 8.2 0.2 0.098
food 6.9 0.43 6.9 0.43 0.86 2.2 0.43 0.43
lunch 0.57| 0.19 0.19 0.19 0.19 0.38| 0.19 0.19
spend 0.32] 0.16 0.32 0.16 0.16 0.16 | 0.16 0.16

Add-1 estimation
IS a blunt instrument

* So add-1 isn’t used for N-grams
* Typically use back-off and interpolation instead

* But add-1 is used to smooth other NLP models
* E.g., Naive Bayes for text classification
* in domains where the number of zeros isn’t so huge.

Backoff

 Sometimes it helps to use less context
* Condition on less context for contexts you haven’t learned much about

e Backoff:

* use trigram if you have good evidence,
e otherwise bigram, otherwise unigram

Smoothing for web-scale N-grams

» “Stupid backoff” (Brants et al. 2007)
* No discounting, just use relative frequencies

[l-
g count(w,;,{ﬂ) it count(w!_)>0
S(w, |wio,) =1 count(w;.,)
+ 0.4S(w, [w,,) otherwise
count(w,)

S(n) =

Unknown words: Open vocabulary vs. closed
vocabulary tasks

* If we know all the words in advanced
* Vocabulary V is fixed
* Closed vocabulary task

e Often we don’t know this
* Out Of Vocabulary = OOV words
* Open vocabulary task

Unknown words: Open vocabulary model
with UNK token

e Define an unknown word token <UNK>

* Training of <UNK> probabilities
* Create a fixed lexicon L of size V
* Any training word not in L changed to <UNK>
* Train language model probabilities as if <UNK> were a normal word

* At decoding time

* Use <UNK> probabilities for any word not in training

Language Modeling Toolkits

e SRILM
e http://www.speech.sri.com/projects/srilm/

* KenLM
* https://kheafield.com/code/kenlm/

http://www.speech.sri.com/projects/srilm/
https://kheafield.com/code/kenlm/

Roadmap

* Language Models
* Our first example of modeling sequences

* n-gram language models
* How to estimate them?
* How to evaluate them?
* Neural models

