COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Language Models (2)

CMSC 470
Marine Carpuat

Slides credit: Jurasky & Martin

Roadmap

* Language Models
* Our first example of modeling sequences

* n-gram language models
* How to estimate them?
* How to evaluate them?
* Neural models

Pros and cons of n-gram models

* Really easy to build, can train on billions and billions of words
* Smoothing helps generalize to new data

* Only work well for word prediction if the test corpus looks like the
training corpus

* Only capture short distance context

Evaluation:
How good is our model?

* Does our language model prefer good sentences to bad ones?

* Assign higher probability to “real” or “frequently observed” sentences
e Than “ungrammatical” or “rarely observed” sentences?

e Extrinsic vs intrinsic evaluation

Intrinsic evaluation: intuition

* The Shannon Game:
« How well can we predict the next word? /" mushrooms 0.1
pepperoni 0.1

| always order pizza with cheese and < anchovies 0.01

The 33rd President of the US was
fried rice 0.0001
| saw a

N and 1e-100
e Unigrams are terrible at this game. (Why?)

* A better model of a text assigns a higher probability to the word that
actually occurs

Intrinsic evaluation
metric: perplexity

The best language model is one that best predicts an unseen test set
e Gives the highest P(sentence)

Perplexity is the inverse probability of the PP(W) = P(wwy..wy) ¥
test set, normalized by the number of
words: \/ 1
= N
P(wwy..owy)
Chain rule: . | {
PPW) = ,];IIP{W:'“'I e Wi1)

For bigrams:

y]
PP(W) = JH)

i=1

Minimizing perplexity is the same as maximizing probability

Perplexity as branching factor

* Let’s suppose a sentence consisting of random digits
* What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

1
Plwiwa...wy) F

PP(W)

Lower perplexity = better model

* Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962

The perils of overfitting

* N-grams only work well for word prediction if the test corpus looks
like the training corpus

* |In real life, it often doesn’t!

* We need to train robust models that generalize

* Smoothing is important
* Choose n carefully

Roadmap

* Language Models
* Our first example of modeling sequences

* n-gram language models
* How to estimate them?
* How to evaluate them?
* Neural models

Toward a Neural Language Model

Figures by Philipp Koehn (JHU)

Representing Words

* “one hot vector”

dog =[0, 0,0, 0,1, 0, 0, 0.
cat =[9, 0, 9, 0, 0, 0, 1, O .
eat =[0, 1, 0, 0, 0, ©, 0, O .

* That’s a large vector! practical solutions:
* |limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units

(

_anguage Moc
~eedforward Neural Networks

eling with

00000C@®@00O0
00 000QQ0O0Q0O
O00000O00O0

O0OO0O0O0O0O00O0O0
000000000
(oloN NoloRoRoNeoNe)

O000000O00O0
000000000
O0OO00O0O0CQCeO

using shared weight matrix

00000000 @
000Q0Q00O0 -0 0 O
000000000 0000

O O O

Map each word into a

0000
0000
0000

0000
0000

0000000
O00QO0O0O00O00O0
CO0O0OO0OO0O0O0OCO0O0

Bengio et al. 2003

Example: Prediction with a Feedforward LM

Output layer P(wlu) X[V

Vixd, U
Hjdden layer 1Xxd; [h, .~
dhx3d W

Projection layer 1x3d [J oo ? - 00 % ®--09¢ (00 ‘ @--00
concatenated embeddings | embedding for embedding for embedding for |

for context words wc)jii;i word 9925 word 45180 WoTdAD

2 S
3.-|hole | in the ground there lived |.§

W W2 Wil Wi

Example: Prediction with a Feedforward LM

Output layer P(wju) 1X/VI

Powi=V gy 31 2W1.3)

= (BExi,Ex,--.Ex)
= o(We+b)
Uh

Hjdden layer 1xdy

= N S8
|

Projection layer |1x3d (@6 ", . *) | % 00
concatenated embeddings | embedding for embedding for embedding for — softmax (Z)
for context words word 35 word 9925 word 45180 o 43
. SRESST A
2 .| hole| in the ground there lived |.¢

|
W3 W W Wy

Note: bias omitted in figure

Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
* sequences of words in the language of interest

* Error/loss: negative log likelihood
* At the corpus level error(4) = —X i, corpus log P, (E)

* At the word level error(4) = —log P, (e;|e ...e;_1)

Example: Parameter Estimation

Output layer

P(wjcontext) Loss function at each position t

masentaer vy (W (im0 i) |\ L= —log p(wi Wi 1 s Wi_ns1)

< L P(“',:/42|“'1_3,H"t-z,N’I.-;)
Parameter update rule

dx|V|
- a—logP(Wr|Wr—la-'-awr—n+l)
I 61 =6-—1n
nput layer d0
one-hot vectors
word 35 word 9925 word 45180
\ A /f/—\ word 42

N e,
Z .|hole]| in the | ground | there lived |.§

Word Embeddings: a useful by-product of

neural LMs

Word

Embedding

00O
O 0O
O 0O
00O

e Words t

nat occurs in similar

contexts tend to have similar

embedd

INgs

 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks

Word Embeddings

sworownding T reduced i
opposite s
X equal
—_—
foxrward — related
W2 "’Hmmr ok dpwn P ;
straight
'Ehi»d 'pw back open
right
left
nabp ™ groving
developing
sent
supporting
speaking stabared ~ containing 9 proait Hiny
tc&v‘nn oxeREINg 2 oriRgaVing
Living giving usmva g
acting m’ 2 hing
educated ”d._ s Eolﬂing
S it . ey
ing md charyed equivalent Gteing
od applied < M?il’ i
- -g >
Al g v RNIINY ratwrming ending
W‘ dedicavddached
A b:sed conmected closed
wishe .

L
sehtpled - “omadmed standing

lace
cover tumm

start

Word Embeddings

cable
m media
aally e Eefevisigpesg somic
. enteydadeneet,
growing jletdng ¥
developing news ddd
talk
supporxting Azve &
-) Ye
ontaining proddt iy opening
g cr@luﬁg . scoxi .“g
3 '!! _g:iving ng
" 4 : aching
pexrfoxming uaﬂ\‘im it
oo ived
dgdting passing Proadcast
o s iming 2
dxiving plaaming

yum hit

Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural e Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
* Synonyms vs. antonyms
* Multiple senses of a word

s\ o

QUEEN UNCLE
/7 QUEEN

KING

AUNT

KING

Language Modeling with
~eedforward Neural Networks

O00O0O0O0OO0O®
00 0Qe0Q00 0
000000000

00000e®000
00 0Q0QRO0O

000000000 OC0O0O@0000O0
O00Q0000OO

CO0O0OO0OO0O0O0OCO0O0

O0OO0OOO0OOO
00 000Q00O0
O0O®@00000O0

O0000000OO0
00 000Q@000
[elleNoNeNeoNeRoN Nol

)y 0 [O

Bengio et al. 2003

Count-based n-gram models vs. feedforward
neural networks

* Pros of feedforward neural LM
* Word embeddings capture generalizations across word typesq

e Cons of feedforward neural LM

* Closed vocabulary
* Training/testing is more computationally expensive

* Weaknesses of both types of model

* Only work well for word prediction if the test corpus looks like the training
corpus

* Only capture short distance context

Roadmap

* Language Models
e Our first example of modeling sequences

* n-gram language models
e How to estimate them?
e How to evaluate them?

* Neural models
 Feedfworward neural networks
 Recurrent neural networks

