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Roadmap 

• Language Models
• Our first example of modeling sequences

• n-gram language models

• How to estimate them?

• How to evaluate them?

• Neural models



Pros and cons of n-gram models

• Really easy to build, can train on billions and billions of words

• Smoothing helps generalize to new data

• Only work well for word prediction if the test corpus looks like the 
training corpus

• Only capture short distance context



Evaluation: 
How good is our model?
• Does our language model prefer good sentences to bad ones?

• Assign higher probability to “real” or “frequently observed” sentences 
• Than “ungrammatical” or “rarely observed” sentences?

• Extrinsic vs intrinsic evaluation



Intrinsic evaluation: intuition

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game.  (Why?)

• A better model of a text assigns a higher probability to the word that 
actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100



Intrinsic evaluation
metric: perplexity

Perplexity is the inverse probability of the 
test set, normalized by the number of 
words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

PP(W ) = P(w1w2...wN )
-

1

N

           =
1

P(w1w2...wN )
N



Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model that 
assign P=1/10 to each digit?



Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

N-gram 
Order

Unigram Bigram Trigram

Perplexity 962 170 109



The perils of overfitting

• N-grams only work well for word prediction if the test corpus looks 
like the training corpus

• In real life, it often doesn’t!

• We need to train robust models that generalize
• Smoothing is important

• Choose n carefully
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Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Representing Words

• “one hot vector”

dog = [ 0, 0, 0, 0, 1, 0, 0, 0 …]

cat = [ 0, 0, 0, 0, 0, 0, 1, 0 …]

eat = [ 0, 1, 0, 0, 0, 0, 0, 0 …]

• That’s a large vector! practical solutions:
• limit to most frequent words (e.g., top 20000)

• cluster words into classes

• break up rare words into subword units



Language Modeling with
Feedforward Neural Networks

Map each word into a
lower-dimensional real-valued space

using shared weight matrix

Embedding layer

Bengio et al. 2003



Example: Prediction with a Feedforward LM



Example: Prediction with a Feedforward LM

Note: bias omitted in figure



Estimating Model Parameters

• Intuition: a model is good if it gives high probability to existing word 
sequences

• Training examples:
• sequences of words in the language of interest

• Error/loss: negative log likelihood 
• At the corpus level  error 𝜆 = − 𝐸 in corpus log 𝑃λ(𝐸)

• At the word level error 𝜆 = − log𝑃λ(𝑒𝑡|𝑒1…𝑒𝑡−1)



Example: Parameter Estimation

Loss function at each position t

Parameter update rule



Word Embeddings:  a useful by-product of 
neural LMs

• Words that occurs in similar 
contexts tend to have similar 
embeddings

• Embeddings capture many 
usage regularities

• Useful features for many NLP 
tasks



Word Embeddings



Word Embeddings



Word Embeddings Capture Useful Regularities

Morpho-Syntactic
• Adjectives: base form vs. comparative

• Nouns: singular vs. plural

• Verbs: present tense vs. past tense

[Mikolov et al. 2013]

Semantic 

• Word similarity/relatedness

• Semantic relations

• But tends to fail at distinguishing
• Synonyms vs. antonyms 

• Multiple senses of a word



Language Modeling with
Feedforward Neural Networks

Bengio et al. 2003



Count-based n-gram models vs. feedforward 
neural networks
• Pros of feedforward neural LM

• Word embeddings capture generalizations across word typesq

• Cons of feedforward neural LM
• Closed vocabulary
• Training/testing is more computationally expensive

• Weaknesses of both types of model
• Only work well for word prediction if the test corpus looks like the training 

corpus
• Only capture short distance context



Roadmap 

• Language Models
• Our first example of modeling sequences

• n-gram language models

• How to estimate them?

• How to evaluate them?

• Neural models
• Feedfworward neural networks
• Recurrent neural networks


