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Roadmap

* Language Models
* Our first example of modeling sequences

* n-gram language models
* How to estimate them?
* How to evaluate them?
* Neural models



Pros and cons of n-gram models

* Really easy to build, can train on billions and billions of words
* Smoothing helps generalize to new data

* Only work well for word prediction if the test corpus looks like the
training corpus

* Only capture short distance context



Evaluation:
How good is our model?

* Does our language model prefer good sentences to bad ones?

* Assign higher probability to “real” or “frequently observed” sentences
e Than “ungrammatical” or “rarely observed” sentences?

e Extrinsic vs intrinsic evaluation



Intrinsic evaluation: intuition

* The Shannon Game:
« How well can we predict the next word? /" mushrooms 0.1
pepperoni 0.1

| always order pizza with cheese and < anchovies 0.01

The 33rd President of the US was
fried rice 0.0001
| saw a

N and 1e-100
e Unigrams are terrible at this game. (Why?)

* A better model of a text assigns a higher probability to the word that
actually occurs



Intrinsic evaluation
metric: perplexity

The best language model is one that best predicts an unseen test set
e Gives the highest P(sentence)

Perplexity is the inverse probability of the PP(W) = P(wwy..wy) ¥
test set, normalized by the number of
words: \/ 1
= N
P(wwy..owy)
Chain rule: . | {
PPW) = ,];IIP{W:'“'I e Wi1)

For bigrams:

y ]
PP(W) = JH )

i=1

Minimizing perplexity is the same as maximizing probability



Perplexity as branching factor

* Let’s suppose a sentence consisting of random digits
* What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

1
Plwiwa...wy) F

PP(W)



Lower perplexity = better model

* Training 38 million words, test 1.5 million words, WSJ

N-gram Bigram Trigram
Order

Perplexity 962



The perils of overfitting

* N-grams only work well for word prediction if the test corpus looks
like the training corpus

* |In real life, it often doesn’t!

* We need to train robust models that generalize

* Smoothing is important
* Choose n carefully



Roadmap

* Language Models
* Our first example of modeling sequences

* n-gram language models
* How to estimate them?
* How to evaluate them?
* Neural models



Toward a Neural Language Model

Figures by Philipp Koehn (JHU)



Representing Words

* “one hot vector”

dog =[0, 0,0, 0,1, 0, 0, 0.
cat =[ 9, 0, 9, 0, 0, 0, 1, O .
eat =[ 0, 1, 0, 0, 0, ©, 0, O .

* That’s a large vector! practical solutions:
* |limit to most frequent words (e.g., top 20000)
* cluster words into classes
* break up rare words into subword units
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Example: Prediction with a Feedforward LM

Output layer P(wlu) X[V

Vixd, U
Hjdden layer 1Xxd; [ h, .~
dhx3d W

Projection layer 1x3d [J oo ? - 00 % ®--09¢ (00 ‘ @--00
concatenated embeddings | embedding for embedding for  embedding for |

for context words wc)jii;i word 9925 word 45180 WoTdAD

2 S
3.-|hole | in the ground there lived |.§

W W2 Wil Wi



Example: Prediction with a Feedforward LM

Output layer P(wju) 1X/VI

Powi=V gy 31 2W1.3)

= (BExi,Ex,--.Ex)
= o(We+b)
Uh

Hjdden layer 1xdy

= N S8
|

Projection layer |1x3d (@6 ", . * ) | % 00
concatenated embeddings | embedding for embedding for  embedding for — softmax ( Z)
for context words word 35 word 9925 word 45180 o 43
. SRESST A
2 .| hole| in the ground there lived |.¢

|
W3 W W Wy

Note: bias omitted in figure



Estimating Model Parameters

* Intuition: a model is good if it gives high probability to existing word
sequences

* Training examples:
* sequences of words in the language of interest

* Error/loss: negative log likelihood
* At the corpus level error(4) = —X i, corpus log P, (E)

* At the word level error(4) = —log P, (e;|e ...e;_1)



Example: Parameter Estimation

Output layer

P(wjcontext) Loss function at each position t

masentaer vy (W (im0 i ) |\ L= —log p(wi Wi 1 s Wi_ns1)

< L P(“',:/42|“'1_3,H"t-z,N’I.-;)
Parameter update rule

dx|V|
- a—logP(Wr|Wr—la-'-awr—n+l)
I 61 =6-—1n
nput layer d0
one-hot vectors
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Word Embeddings: a useful by-product of

neural LMs

Word

Embedding
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 Embeddings capture many
usage regularities

e Useful features for many NLP

tasks



Word Embeddings
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Word Embeddings
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Word Embeddings Capture Useful Regularities

Morpho-Syntactic Semantic
* Adjectives: base form vs. comparative * Word similarity/relatedness
* Nouns: singular vs. plural e Semantic relations

* \erbs: present tense vs. past tense
[Mikolov et al. 2013]

* But tends to fail at distinguishing
* Synonyms vs. antonyms
* Multiple senses of a word

s\ o

QUEEN UNCLE
/7 QUEEN

KING
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Language Modeling with
~eedforward Neural Networks
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Count-based n-gram models vs. feedforward
neural networks

* Pros of feedforward neural LM
* Word embeddings capture generalizations across word typesq

e Cons of feedforward neural LM

* Closed vocabulary
* Training/testing is more computationally expensive

* Weaknesses of both types of model

* Only work well for word prediction if the test corpus looks like the training
corpus

* Only capture short distance context



Roadmap

* Language Models
e Our first example of modeling sequences

* n-gram language models
e How to estimate them?
e How to evaluate them?

* Neural models
 Feedfworward neural networks
 Recurrent neural networks



