
Language Models (2)

CMSC 470

Marine Carpuat

Slides credit: Jurasky & Martin

Roadmap

• Language Models
• Our first example of modeling sequences

• n-gram language models

• How to estimate them?

• How to evaluate them?

• Neural models

Pros and cons of n-gram models

• Really easy to build, can train on billions and billions of words

• Smoothing helps generalize to new data

• Only work well for word prediction if the test corpus looks like the
training corpus

• Only capture short distance context

Evaluation:
How good is our model?
• Does our language model prefer good sentences to bad ones?

• Assign higher probability to “real” or “frequently observed” sentences
• Than “ungrammatical” or “rarely observed” sentences?

• Extrinsic vs intrinsic evaluation

Intrinsic evaluation: intuition

• The Shannon Game:
• How well can we predict the next word?

• Unigrams are terrible at this game. (Why?)

• A better model of a text assigns a higher probability to the word that
actually occurs

I always order pizza with cheese and ____

The 33rd President of the US was ____

I saw a ____

mushrooms 0.1

pepperoni 0.1

anchovies 0.01

….

fried rice 0.0001

….

and 1e-100

Intrinsic evaluation
metric: perplexity

Perplexity is the inverse probability of the
test set, normalized by the number of
words:

Chain rule:

For bigrams:

Minimizing perplexity is the same as maximizing probability

The best language model is one that best predicts an unseen test set

• Gives the highest P(sentence)

PP(W) = P(w1w2...wN)
-

1

N

 =
1

P(w1w2...wN)
N

Perplexity as branching factor

• Let’s suppose a sentence consisting of random digits

• What is the perplexity of this sentence according to a model that
assign P=1/10 to each digit?

Lower perplexity = better model

• Training 38 million words, test 1.5 million words, WSJ

N-gram
Order

Unigram Bigram Trigram

Perplexity 962 170 109

The perils of overfitting

• N-grams only work well for word prediction if the test corpus looks
like the training corpus

• In real life, it often doesn’t!

• We need to train robust models that generalize
• Smoothing is important

• Choose n carefully

Roadmap

• Language Models
• Our first example of modeling sequences

• n-gram language models

• How to estimate them?

• How to evaluate them?

• Neural models

Toward a Neural Language Model

Figures by Philipp Koehn (JHU)

Representing Words

• “one hot vector”

dog = [0, 0, 0, 0, 1, 0, 0, 0 …]

cat = [0, 0, 0, 0, 0, 0, 1, 0 …]

eat = [0, 1, 0, 0, 0, 0, 0, 0 …]

• That’s a large vector! practical solutions:
• limit to most frequent words (e.g., top 20000)

• cluster words into classes

• break up rare words into subword units

Language Modeling with
Feedforward Neural Networks

Map each word into a
lower-dimensional real-valued space

using shared weight matrix

Embedding layer

Bengio et al. 2003

Example: Prediction with a Feedforward LM

Example: Prediction with a Feedforward LM

Note: bias omitted in figure

Estimating Model Parameters

• Intuition: a model is good if it gives high probability to existing word
sequences

• Training examples:
• sequences of words in the language of interest

• Error/loss: negative log likelihood
• At the corpus level error 𝜆 = − 𝐸 in corpus log 𝑃λ(𝐸)

• At the word level error 𝜆 = − log𝑃λ(𝑒𝑡|𝑒1…𝑒𝑡−1)

Example: Parameter Estimation

Loss function at each position t

Parameter update rule

Word Embeddings: a useful by-product of
neural LMs

• Words that occurs in similar
contexts tend to have similar
embeddings

• Embeddings capture many
usage regularities

• Useful features for many NLP
tasks

Word Embeddings

Word Embeddings

Word Embeddings Capture Useful Regularities

Morpho-Syntactic
• Adjectives: base form vs. comparative

• Nouns: singular vs. plural

• Verbs: present tense vs. past tense

[Mikolov et al. 2013]

Semantic

• Word similarity/relatedness

• Semantic relations

• But tends to fail at distinguishing
• Synonyms vs. antonyms

• Multiple senses of a word

Language Modeling with
Feedforward Neural Networks

Bengio et al. 2003

Count-based n-gram models vs. feedforward
neural networks
• Pros of feedforward neural LM

• Word embeddings capture generalizations across word typesq

• Cons of feedforward neural LM
• Closed vocabulary
• Training/testing is more computationally expensive

• Weaknesses of both types of model
• Only work well for word prediction if the test corpus looks like the training

corpus
• Only capture short distance context

Roadmap

• Language Models
• Our first example of modeling sequences

• n-gram language models

• How to estimate them?

• How to evaluate them?

• Neural models
• Feedfworward neural networks
• Recurrent neural networks

