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Machine Translation

* Translation system * 3 problems
* |nput: source sentence F

e Qutput: target sentence E

e Can be viewed as a function * Modeling
* how to define P(.)?

~

E = mt(F)
* Training/Learning
* how to estimate parameters from
* Modern machine translation systems parallel corpora?

~

FE = argmax P(F | F;0)
E

e Search
* How to solve argmax efficiently?



Neural Machine Translation

* Neural language models review

* Sequence to sequence models for MT
* Encoder-Decoder
e Sampling and search (greedy vs beam search)
* Training
* Practical tricks

e Sequence to sequence models for other NLP tasks



A feedforward neural 3-gram model
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A recurrent language model

(a) A single RNN time step (b) An unrolled RNN
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p; = softmax (W h; + by).



A recurrent language model

(a) A single RNN time step (b) An unrolled RNN

tanh
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(c) A simplified view
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P(E|F) as an encoder-decoder model




P(E|F) as an encoder-decoder model
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Generating Output

* We have a model P(E|F), how can we generate translations?

e 2 methods

 Sampling: generate a random sentence according to probability distribution

* Argmax: generate sentence with highest probability



Ancestral Sampling

While ej_;! = </s>
By = P(ej|F,el, ...,ej_l)

* Randomly generate words one by one
e Until end of sentence symbol
* Done!



Greedy search

While ej_l! — </S>
e; = argmax P(e;|F.eq, ..., ej_1)

* One by one, pick single highest
probability word

* Problems
* Often generates easy words first

* Often prefers multiple common
words to rare words



e. PlejF) e PlelFe) € P(e3|F,e1,e2) e.
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Greedy Search e 1.0 < /S>
Example ’
1.0
ubn /S>
Consider this complete
search graph for a model
with vocabulary {a,b,</s>} </s>
What sequence does “a” 1.0 ></S>
greedy search produces?
What is the best scoring 1.0
sequence in the search Uy ' 1< /S>

space?




e. PlelF) e PlelFe,) e Ple|Fe;e,) e,

0 1
Greedy Search “q” 1.0 < /S>
Example ’
1.0

‘D /S>
Consider this complete
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Here greedy search fails 1.0
to discover the best “b” ></S>

scoring output!




log P(e,|F) log P(e,|Fe,) logP(e,Fe,.e)

Beam Search

Idea: consider b top hypotheses
at each time step

At each time step:

-  Expand the b hypotheses for
all words in the vocabulary

- Prune down to the top b
hypotheses

-  Move to next step

Example beam search with b =2
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