COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Neural sequence-to-sequence
models for machine translation

CMSC 470
Marine Carpuat

Machine Translation

* Translation system * 3 problems
* |nput: source sentence F

e Qutput: target sentence E

e Can be viewed as a function * Modeling
* how to define P(.)?

~

E = mt(F)
* Training/Learning
* how to estimate parameters from
* Modern machine translation systems parallel corpora?

~

FE = argmax P(F | F;0)
E

e Search
* How to solve argmax efficiently?

Neural Machine Translation

* Neural language models review

* Sequence to sequence models for MT
* Encoder-Decoder
e Sampling and search (greedy vs beam search)
* Training
* Practical tricks

e Sequence to sequence models for other NLP tasks

A feedforward neural 3-gram model

w

h

b

h

softmax

m = concat(M.., ,,M. ¢, ,)
h = tanh(W,,,m + b,
S = thh -+ bs

p = softmax(s)

lookup(e, ,)
lookup(e,)

>concaqx\,*

A recurrent language model

(a) A single RNN time step (b) An unrolled RNN

tanh »{h,

tanh

m;y = M’,et—l
no_ tanh(W,nmy + Winhe—1 +bp) t2>
t 0 otherwise.

p; = softmax (W h; + by).

A recurrent language model

(a) A single RNN time step (b) An unrolled RNN

tanh

tanh »{h,

(c) A simplified view

h, >{ RNN —{ RNN |-{ RNN |-
: ‘ .
xl xz x3

my — M',et—l
ht — RNN(mt, ht—l)
p; = softmax(Wyshy + bs).

Neural Machine Translation

* Neural language models review

* Sequence to sequence models for MT
* Encoder-Decoder
e Sampling and search (greedy vs beam search)
* Practical tricks

* Sequence to sequence models for other NLP tasks

P(E|F) as an encoder-decoder model

P(E|F) as an encoder-decoder model

0 otherwise.

()
i

— softma,x(Wh,Shﬁe) + b,)

() — {RNN(G)(mi“’),hE‘?l) E> 1,
{

p.”

otherwise.

Encoder

[E]-HRNNWHRNNW}—» . —RNNT
: A A i

| lookup® | | lookup® |
: i

850 i .

p(e)‘ p(e}? p(e)IEI

] i i g

’softrnax“”softmax()] @nax‘e)

3) A

o F[RNNE sl RNNE o -] RNNE

A : H r 4 A
Iook@g lookup® | | lookup® | lookup® |
/) : A

Generating Output

* We have a model P(E|F), how can we generate translations?

e 2 methods

 Sampling: generate a random sentence according to probability distribution

* Argmax: generate sentence with highest probability

Ancestral Sampling

While ej_;! = </s>
By = P(ej|F,el, ...,ej_l)

* Randomly generate words one by one
e Until end of sentence symbol
* Done!

Greedy search

While ej_l! — </S>
e; = argmax P(e;|F.eq, ..., ej_1)

* One by one, pick single highest
probability word

* Problems
* Often generates easy words first

* Often prefers multiple common
words to rare words

e. PlejF) e PlelFe) € P(e3|F,e1,e2) e.

0 1
Greedy Search e 1.0 < /S>
Example ’
1.0
ubn /S>
Consider this complete
search graph for a model
with vocabulary {a,b,</s>} </s>
What sequence does “a” 1.0 ></S>
greedy search produces?
What is the best scoring 1.0
sequence in the search Uy ' 1< /S>

space?

e. PlelF) e PlelFe,) e Ple|Fe;e,) e,

0 1
Greedy Search “q” 1.0 < /S>
Example ’
1.0

‘D /S>
Consider this complete
search graph for a
model with vocabulary </s3)
{a,b,</s>} 1.0

uan ></S>
Here greedy search fails 1.0
to discover the best “b” ></S>

scoring output!

log P(e,|F) log P(e,|Fe,) logP(e,Fe,.e)

Beam Search

Idea: consider b top hypotheses
at each time step

At each time step:

- Expand the b hypotheses for
all words in the vocabulary

- Prune down to the top b
hypotheses

- Move to next step

Example beam search with b =2

Neural Machine Translation

* Neural language models review

* Sequence to sequence models for MT
* Encoder-Decoder
e Sampling and search (greedy vs beam search)
* Training
* Practical tricks

e Sequence to sequence models for other NLP tasks

