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Machine Translation

* Translation system * 3 problems
* |nput: source sentence F

e Qutput: target sentence E

e Can be viewed as a function * Modeling
* how to define P(.)?

~

E = mt(F)
* Training/Learning
* how to estimate parameters from
* Modern machine translation systems parallel corpora?

~

FE = argmax P(F | F;0)
E

e Search
* How to solve argmax efficiently?



P(E|F) as an encoder-decoder model




Neural Machine Translation

* Neural language models review

* Sequence to sequence models for MT
* Encoder-Decoder
e Sampling and search (greedy vs beam search)
* How to train?
* Model variants and practical tricks
* Attention mechanism



Training

 Same as for RNN language modeling
* Intuition: a good model assigns high probability to training examples

e Loss function

* Negative log-likelihood of training data
* Also called cross-entropy loss

* Total loss for one example (sentence pair) = sum of loss at each time step (word)

* Backpropagation

* Gradient of loss at time step t is propagated through the network all the way back to 1t
time step



Aside: why don't we use BLEU as training
05S7

N-gram overlap between machine translation output and reference translation
Compute precision for n-grams of size 1 to 4

Add brevity penalty (for too short translations)
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Typically computed over the entire corpus, not single sentences



Training in practice: online

Algorithm 1 A fully online training algorithm

1: procedure ONLINE

2 for several epochs of training do

3 for each training example in the data do
4: Calculate gradients of the loss

5 Update the parameters according to this gradient
6 end for

T end for

8: end procedure




Training in practice: batch

Algorithm 2 A batch learning algorithm

1: procedure BATCH

2 for several epochs of training do

3: for each training example in the data do

4 Calculate and accumulate gradients of the loss
5 end for

6 Update the parameters according to the accumulated gradient
T end for

8: end procedure




Training In practice: minibatch
 Compromise between online and batch

 Computational advantages
* Can leverage vector processing instructions in modern hardware
* By processing multiple examples simultaneously
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Problem with minibatches: examples have

varying length

<s> that IS an example
<s> this IS another </s>
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Final Loss

* 3 tricks (same as for language
modeling)

e Padding

e Add </s> symbol to make all
sentences same length

* Masking

* Multiply loss function calculated
over padded symbols by zero

* +sort sentences by length
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Other encoder structures:
RNN variants

* LSTMs
e Aim to address vanishing/exploding gradient issue

(a) A stacked RNN (b) With residual connectlons
» Stacked RNNs j=rmsmsmeommmms mhees o e
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Motivation:
Help bootstrap learning

By shortening length of
dependencies

Motivation:

- Take 2 hidden vectors from source
encoder

- Combine them into a vector of size
required by decoder



A few more tricks: ensembling

* Combine predictions from
multiple models

<S> <S>
)lll 9;11
if\LSTMy_»L } LSTMe * Methods
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I
* Parameter averaging



Tricks: addressing length bias

* Default models tend to generate short sentences

* Solutions:
* Prior probability on sentence length

A

FE = argmax log P(|E| | |F|) +log P(FE | F).
E

* Normalize by sentence length

A

E = argmax log P(E | F')/|E|.
E
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