
Dependency Parsing (2)

CMSC 470

Marine Carpuat

Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Transition-based Dependency Parser

Properties of this algorithm:
- Linear in sentence length
- A greedy algorithm
- Output quality depends on oracle

Where do we get an oracle?

• Multiclass classification problem
• Input: current parsing state (e.g., current and previous configurations)
• Output: one transition among all possible transitions
• Q: size of output space?

• 3 for unlabeled parsing (LEFT-ARC, RIGHT-ARC, SHIFT)
• 1 + 2L for labeled parsing where L is the number of labeled dependencies

• Any supervised classifier can be used
• E.g., perceptron, neural network

• Open questions
• What are good features for this task?
• Where do we get training examples?

Generating Training Examples

• What we have in a treebank • What we need to train an oracle
• Pairs of configurations and

predicted parsing action

Generating training examples

• Approach: simulate parsing to generate reference tree

• Given
• A current config with stack S, dependency relations Rc

• A reference parse (V,Rp)

• Do

Additional condition on
RightArc makes sure a
word is not removed from
stack before its been
attached to all its
dependent

Let’s try it out

How can we define classifier features?

• What makes a good feature?
• Captures useful correlations between patterns in input and predicted class
• Avoid sparsity, encourage generalization

• Here input is parser configuration
• consists of stack, buffer, current set of relations

• Typical features
• Features focus on top level of stack
• Use word forms, POS, and their location in stack and buffer
• Use dependency relations found so far

Features example

• Given configuration • Example of useful features

Features example

Research highlight:
Dependency parsing with stack-LSTMs

• From Dyer et al. 2015: http://www.aclweb.org/anthology/P15-1033

• Idea
• Instead of hand-crafted feature

• Predict next transition using recurrent neural networks to learn
representation of stack, buffer, sequence of transitions

http://www.aclweb.org/anthology/P15-1033

Research highlight:
Dependency parsing with stack-LSTMs

Research highlight:
Dependency parsing with stack-LSTMs

An Alternative to the Arc-
Standard Transition System

A weakness of arc-standard parsing

Right dependents cannot be attached to their head
until all their dependents have been attached

Arc Eager Parsing

• LEFT-ARC
• Create head-dependent rel. between word at front of buffer and word at top of

stack
• pop the stack

• RIGHT-ARC
• Create head-dependent rel. between word on top of stack and word at front of

buffer
• Shift buffer head to stack

• SHIFT
• Remove word at head of input buffer
• Push it on the stack

• REDUCE
• Pop the stack

Arc Eager Parsing Example

Properties of transition-based
parsing algorithms

Trees & Forests

• A dependency tree is a graph satisfying the following conditions
• Root
• Single head
• No cycles
• Connectedness

• A dependency forest is a dependency graph satisfying
• Root
• Single head
• No cycles
• but not Connectedness

Properties of this transition-based
parsing algorithm

- Correctness
- For every complete transition sequence, the resulting graph is a projective

dependency forest (soundness)

- For every projective dependency forest G, there is a transition sequence that
generates G (completeness)

- Trick: forest can be turned into tree by adding links to ROOT0

Projectivity

• Arc from head to dependent is projective
• If there is a path from head to every word between head and

dependent

• Dependency tree is projective
• If all arcs are projective
• Or equivalently, if it can be drawn with no crossing edges

• Projective trees make computation easier
• But most theoretical frameworks do not assume projectivity

• Need to capture long-distance dependencies, free word order

Arc-standard parsing can’t produce non-
projective trees

How frequent are non-projective structures?

• Statistics from CoNLL shared task
• NPD = non projective dependencies

• NPS = non projective sentences

How to deal with non-projectivity?
(1) change the transition system

• Intuition:
• Add new transitions

• That apply to 2nd word of the stack
• Top word of stack is treated as context

[Attardi 2006]

How to deal with non-projectivity?
(2) pseudo-projective parsing

Solution:

• “projectivize” a non-projective tree by creating
new projective arcs

• That can be transformed back into non-projective
arcs in a post-processing step

How to deal with non-projectivity?
(2) pseudo-projective parsing

Solution:

• “projectivize” a non-projective tree by creating
new projective arcs

• That can be transformed back into non-projective
arcs in a post-processing step

Dependency Parsing: what you should know

• Transition-based dependency parsing
• Shift-reduce parsing
• Transition systems: arc standard, arc eager
• Oracle algorithm: how to obtain a transition sequence given a tree
• How to construct a multiclass classifier to predict parsing actions
• What transition-based parsers can and cannot do
• That transition-based parsers provide a flexible framework that allows many

extensions
• such as RNNs vs feature engineering, non-projectivity (but I don’t expect you to

memorize these algorithms)

• Next: Graph-based dependency parsing

