COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Dependency Parsing (2)

CMSC 470
Marine Carpuat

Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Transition-based Dependency Parser

function DEPENDENCYPARSE(words) returns dependency tree

state «— {[root], [words], [] } : initial configuration
while srare not final
t <+ ORACLE(state) . choose a transition operator to apply

state «<— APPLY(t, state) ; apply it, creating a new state
return state

[DTVERY A generic transition-based dependency parser

Properties of this algorithm:
- Linear in sentence length

- A greedy algorithm
- Output quality depends on oracle

Where do we get an oracle?

* Multiclass classification problem
* Input: current parsing state (e.g., current and previous configurations)
e QOutput: one transition among all possible transitions
e Q: size of output space?
e 3 for unlabeled parsing (LEFT-ARC, RIGHT-ARC, SHIFT)
e 1+ 2L for labeled parsing where L is the number of labeled dependencies

* Any supervised classifier can be used
e E.g., perceptron, neural network

* Open questions

* What are good features for this task?
* Where do we get training examples?

Generating Training Examples

e What we have in a treebank e What we need to train an oracle

* Pairs of configurations and
(o) predicted parsing action
[=
Step Stack Word List Predicted Action

Book the flight through Houston 0 [root] [book, the, flight, through, houston] SHIFT
1 [root, book]| [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the. flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston| SHIFT
5 [root, book. flight, through] [houston] SHIFT
6 [root, book. flight, through. houston] [LEFTARC
7 [root, book, flight. houston | [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
9 [root, book] [RIGHTARC
10 [root] [] Done

QIR ER] Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Generating training examples

* Approach: simulate parsing to generate reference tree

Additional condition on
e Given RightArc makes sure a

: . , word is not removed from
* A current config with stack S, dependency relations Rc stack before its been

* Areference parse (V,Rp) attached to all its
e Do dependent

LEFTARC(r): if (S1 7 S2) €R,,

RIGHTARC(r): if (S2 7 S1) € R, and V', w s.t.(S; ' w) € R, then (S ' w) €
R

SHIFT: otherwise

Let’s try it out

LEFTARC(r): if (S) r S2) €R,

RIGHTARC(r): if (S2 7 S1) € R, and V', w s.t.(S; ¥ w) € R, then (S| ' w) €
R,

SHIFT: otherwise

How can we define classifier features?

* What makes a good feature?
» Captures useful correlations between patterns in input and predicted class
* Avoid sparsity, encourage generalization

* Here input is parser configuration
e consists of stack, buffer, current set of relations

e Typical features
e Features focus on top level of stack
e Use word forms, POS, and their location in stack and buffer
* Use dependency relations found so far

Features example

* Given configuration

Stack

Word buffer

Relations

[root, canceled, flights]

[to Houston]

(canceled — United)
(flights — morning)
(flights — the)

* Example of useful features

(s1.w = flights,op = shift)
(s2.w = canceled,op = shift)
(s1.t = NNS.op = shift)

(s2.t = VBD,op = shift)
(by.w = to,op = shift)
(by.t =T0O,0p = shift)
(s1.wt = flightsNNS, op = shift)

(s1t.52t = NNSVBD, op = shift)

Features example

Source Feature templates

One word s;.w S1.t S1.wt
$2.W §7.1 Sy Wi
by.w by.w bo.wt
Two word s;.wos.w S1.108).t si.toby.w
S1.L 0S8y Wt S1.WOS2 . WOSr.I S1.WOS81.[05852.0
S1.WOS81.1082.1 S1.WOoS81.1

DT ERY Standard feature templates for training transition-based dependency parsers.
In the template specifications s, refers to a location on the stack, b, refers to a location in the
word buffer, w refers to the wordform of the input, and ¢ refers to the part of speech of the
input.

Research highlight:
Dependency parsing with stack-LSTMs

* From Dyer et al. 2015: http://www.aclweb.org/anthology/P15-1033

e |dea
* Instead of hand-crafted feature

* Predict next transition using recurrent neural networks to learn
representation of stack, buffer, sequence of transitions

http://www.aclweb.org/anthology/P15-1033

Research highlight:
Dependency parsing with stack-LSTMs

Yo Yi Yo Yi Yo Y1 Y2
t t pop { t push { | t
t t t t 1‘\\ t //%

Figure 1: A stack LSTM extends a conventional left-to-right LSTM with the addition of a stack pointer
(notated as TOP in the figure). This figure shows three configurations: a stack with a single element (left),
the result of a pop operation to this (middle), and then the result of applying a push operation (right).
The boxes in the lowest rows represent stack contents, which are the inputs to the LSTM, the upper rows
are the outputs of the LSTM (in this paper, only the output pointed to by TOP is ever accessed), and the
middle rows are the memory cells (the c;’s and h;’s) and gates. Arrows represent function applications
(usually affine transformations followed by a nonlinearity), refer to §2.1 for specifics.

Research highlight:
Dependency parsing with stack-LSTMs

o
s e B
t

&)2 Xy

T [amos | 1 1 T t

an (\ decision was made ROOT

overhasty Qg
+«— REDUCE-LEFT(amod)

I L)

A I — SHIFT

Figure 2: Parser state computation encountered while parsing the sentence “an overhasty decision was
made.” Here S designates the stack of partially constructed dependency subtrees and its LSTM encod-
ing: B is the buffer of words remaining to be processed and its LSTM encoding; and A is the stack
representing the history of actions taken by the parser. These are linearly transformed, passed through a
ReL.U nonlinearity to produce the parser state embedding p;. An affine transformation of this embedding
is passed to a softmax layer to give a distribution over parsing decisions that can be taken.

An Alternative to the Arc-
Standard Transition System

A weakness of arc-standard parsing

Right dependents cannot be attached to their head
until all their dependents have been attached

[nmod

B 7

Book the flight through Houston

Step Stack Word List Predicted Action
0 [root] [book. the. flight. through. houston| SHIFT
| [root, book] [the. flight, through, houston] SHIFT
2 [root, book, the] [flight. through. houston] SHIFT
3 [root, book, the. flight] [through, houston| LEFTARC
4 [root. book. flight] [through, houston]| SHIFT
5 [root, book. flight, through] [houston| SHIFT
6 [root. book, flight. through. houston] [LEFTARC
7 [root, book, flight, houston | [] RIGHTARC
8 [root, book, flight] [RIGHTARC
9 [root, book]| [RIGHTARC
10 [root] [] Done

QTN ERY (Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Arc Eager Parsing

* LEFT-ARC

. CreaI;ce head-dependent rel. between word at front of buffer and word at top of
stac

* pop the stack
* RIGHT-ARC

. (bir?c?te head-dependent rel. between word on top of stack and word at front of
uffer

* Shift buffer head to stack
e SHIFT

 Remove word at head of input buffer
e Push it on the stack

* REDUCE
* Pop the stack

Arc Eager Parsing Example

Step Stack | Word List Action Relation Added
0 [root] | [book, the, flight, through, houston] [RIGHTARC (root — book)
1 [root, book] | [the, flight, through, houston] SHIFT
2 [root, book, the] | [flight, through, houston] LEFTARC (the « flight)
3 [root, book] | [flight, through, houston] RIGHTARC (book — flight)
4 [root, book, flight] | [through. houston] SHIFT
5 [root, book, flight, through]| | [houston] LEFTARC | (through < houston)
6 [root, book, flight] | [houston] RIGHTARC | (flight — houston)
7 [root, book, flight, houston] | [] REDUCE
8 [root, book, flight] | [] REDUCE
9 [root, book] | [] REDUCE
10 [root] | [] Done

QTN BERL] A processing trace of Book the flight through Houston using the arc-eager
transition operators.

Properties of transition-based
parsing algorithms

Trees & Forests

* A dependency tree is a graph satisfying the following conditions
Root

Single head

No cycles

Connectedness

* A dependency forest is a dependency graph satisfying
* Root
* Single head
* No cycles
* but not Connectedness

Properties of this transition-based
parsing algorithm

- Correctness

- For every complete transition sequence, the resulting graph is a projective
dependency forest (soundness)

- For every projective dependency forest G, there is a transition sequence that
generates G (completeness)

- Trick: forest can be turned into tree by adding links to ROOTo

Projectivity

* Arc from head to dependent is projective

* If there is a path from head to every word between head and
dependent

* Dependency tree is projective
* If all arcs are projective
* Or equivalently, if it can be drawn with no crossing edges

* Projective trees make computation easier

* But most theoretical frameworks do not assume projectivity
* Need to capture long-distance dependencies, free word order

Arc-standard parsing can't produce non-
projective trees

AuxP
Pred
Sb
Atr ‘ AuxZ
root VA nich je jen jedna na kvalitu .

(out-of) (them) (is) (only) (one) (to) (quality)

Pred

Atr

]

[root Z] nich [je jen jedna na kvalitu]
(out-of) (them) (is) (only) (one) (to) (quality)

How frequent are non-projective structures?

e Statistics from CoNLL shared task

* NPD = non projective dependencies
* NPS = non projective sentences

Language %NPD %NPS

Dutch 5.4 36.4
German 2.3 27.8
Czech 1.9 23.2
Slovene 1.9 22:2
Portuguese 1.3 18.9

Danish 1.0 15.6

How to deal with non-projectivity?
(1) change the transition system

Transition Preconditic
NP-Left, (o|wi|wk, wi|3,A) = (o|wk, wj|B,AU{(wj,r.w;)}) #0
NP-Right, (o|wi|wk, wj|3, A) = (o|w;, wk|3, AU {(w;, r,wj)})

* Intuition:

* Add new transitions
* That apply to 2"d word of the stack
* Top word of stack is treated as context

[Attardi 2006]

How to deal with non-projectivity?
(2) pseudo-projective parsing

Solution:

* “projectivize” a non-projective tree by creating
new projective arcs

* That can be transformed back into non-projective
arcs in a post-processing step

How to deal with non-projectivity?
(2) pseudo-projective parsing

ROOT A hearing 15 scheduled on the issue today

VC:TMP
PRED

sgl:ATT FC
ATT

ROOT A hearing is scheduled on the issue today

Dependency Parsing: what you should know

* Transition-based dependency parsing

 Shift-reduce parsing
Transition systems: arc standard, arc eager
Oracle algorithm: how to obtain a transition sequence given a tree
How to construct a multiclass classifier to predict parsing actions
What transition-based parsers can and cannot do

That transition-based parsers provide a flexible framework that allows many
extensions

* such as RNNs vs feature engineering, non-projectivity (but | don’t expect you to
memorize these algorithms)

* Next: Graph-based dependency parsing

