

Dependency Parsing (3)

CMSC 470

Marine Carpuat

Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Dependency Parsing: what you should know

- Transition-based dependency parsing
 - Shift-reduce parsing
 - Transition systems: arc standard, arc eager
 - Oracle algorithm: how to obtain a transition sequence given a tree
 - How to construct a multiclass classifier to predict parsing actions
 - What transition-based parsers can and cannot do
 - That transition-based parsers provide a flexible framework that allows many extensions
 - such as RNNs vs feature engineering, non-projectivity (but I don't expect you to memorize these algorithms)
- Next: Graph-based dependency parsing

Generating Training Examples

• What we have in a treebank

root

Boo

- What we need to train an oracle
 - Pairs of configurations and predicted parsing action

(dobj) (nmod) (det) (case)		
	Step	
ok the flight through Houston	0	
	1	
	2	
	3	[root
	4	1000 C

Step	Stack	Word List	Predicted Action
0	[root]	[book, the, flight, through, houston]	SHIFT
1	[root, book]	[the, flight, through, houston]	SHIFT
2	[root, book, the]	[flight, through, houston]	SHIFT
3	[root, book, the, flight]	[through, houston]	LEFTARC
4	[root, book, flight]	[through, houston]	SHIFT
5	[root, book, flight, through]	[houston]	SHIFT
6	[root, book, flight, through, houston]	0	LEFTARC
7	[root, book, flight, houston]	Π	RIGHTARC
8	[root, book, flight]	0	RIGHTARC
9	[root, book]	0	RIGHTARC
10	[root]	0	Done

Figure 14.8 Generating training items consisting of configuration/predicted action pairs by simulating a parse with a given reference parse.

Generating training examples

- Approach: simulate parsing to generate reference tree
- Given
 - A current config with stack S, dependency relations Rc
 - A reference parse (V,Rp)
- Do

LEFTARC(r): if $(S_1 r S_2) \in R_p$ RIGHTARC(r): if $(S_2 r S_1) \in R_p$ and $\forall r', w s.t.(S_1 r' w) \in R_p$ then $(S_1 r' w) \in R_c$

SHIFT: otherwise

Additional condition on RightArc makes sure a word is not removed from stack before its been attached to all its dependent

Graph-based Dependency Parsing

Directed Spanning Trees

A directed spanning tree of a (multi-)digraph G = (V, A), is a subgraph G' = (V', A') such that:

►
$$V' = V$$

•
$$A' \subseteq A$$
, and $|A'| = |V'| - 1$

A spanning tree of the following (multi-)digraphs

Dependency Parsing as Finding the Maximum Spanning Tree

- Views parsing as finding the best directed spanning tree
 - of multi-digraph that captures all possible dependencies in a sentence
 - needs a score that quantifies how good a tree is
- Assume we have an arc factored model

i.e. weight of graph can be factored as sum or product of weights of its arcs

- Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us
 - Recursive algorithm
 - Naïve implementation: O(n^3)

Chu-Liu-Edmonds illustrated (for unlabeled dependency parsing)

Find highest scoring incoming arc for each vertex

If this is a tree, then we have found MST!!

- If not a tree, identify cycle and contract
- Recalculate arc weights into and out-of cycle

- Outgoing arc weights
 - Equal to the max of outgoing arc over all vertexes in cycle
 - $\blacktriangleright\,$ e.g., John $\rightarrow\,$ Mary is 3 and saw $\rightarrow\,$ Mary is 30

Incoming arc weights

- Equal to the weight of best spanning tree that includes head of incoming arc, and all nodes in cycle
- root → saw → John is 40 (**)
- ▶ root \rightarrow John \rightarrow saw is 29

This is a tree and the MST for the contracted graph!!

Go back up recursive call and reconstruct final graph

Arc weights as linear classifiers

 $w_{ij}^k = e^{\mathbf{W} \cdot \mathbf{f}(i,j,k)}$

- Arc weights are a linear combination of features of the arc, f, and a corresponding weight vector w
- Raised to an exponent (simplifies some math ...)
- What arc features?

Example of classifier features

Features from [McDonald et al. 2005]:

▶ Identities of the words w_i and w_j and the label I_k

```
head=saw & dependent=with
```

Typical classifier features

- Word forms, lemmas, and parts of speech of the headword and its dependent
- Corresponding features derived from the contexts before, after and between the words
- Word embeddings
- The dependency relation itself
- The direction of the relation (to the right or left)
- The distance from the head to the dependent

How to score a graph G using features?

Learning parameters with the Structured Perceptron

Training data:
$$T = \{(x_t, G_t)\}_{t=1}^{|T|}$$

1. $\mathbf{w}^{(0)} = 0; i = 0$
2. for $n: 1..N$
3. for $t: 1..T$
4. Let $G' = \arg \max_{G'} \mathbf{w}^{(i)} \cdot \mathbf{f}(G')$
5. if $G' \neq G_t$
6. $\mathbf{w}^{(i+1)} = \mathbf{w}^{(i)} + \mathbf{f}(G_t) - \mathbf{f}(G')$
7. $i = i + 1$
8. return \mathbf{w}^i

Dependency parsing algorithms

Transition-based

Locally trained

Graph-based

• Globally trained

- Use greedy search algorithms
- Define features over a rich history of parsing decisions

- Use exact (or near exact) search algorithms
- Define features over a limited history of parsing decisions

Dependency Parsing: what you should know

- Interpreting dependency trees
- Transition-based dependency parsing
 - Shift-reduce parsing
 - Transition system: arc standard, arc eager
 - Oracle
 - Learning/predicting parsing actions
- Graph-based dependency parsing
- A flexible framework that allows many extensions
 - RNNs vs feature engineering, non-projectivity