COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Dependency Parsing (3)

CMSC 470
Marine Carpuat

Fig credits: Joakim Nivre, Dan Jurafsky & James Martin

Dependency Parsing: what you should know

* Transition-based dependency parsing

 Shift-reduce parsing
Transition systems: arc standard, arc eager
Oracle algorithm: how to obtain a transition sequence given a tree
How to construct a multiclass classifier to predict parsing actions
What transition-based parsers can and cannot do

That transition-based parsers provide a flexible framework that allows many
extensions

* such as RNNs vs feature engineering, non-projectivity (but | don’t expect you to
memorize these algorithms)

* Next: Graph-based dependency parsing

Generating Training Examples

e What we have in a treebank e What we need to train an oracle

(o) * Pairs of configurations and
predicted parsing action

.-"_(‘I”h'-.:_\.l . (nmod} \

[e |

[¢ \il J | Step Stack Word List Predicted Action

Book the flight through Houston 0 [root] [book, the, flight, through, houston] SHIFT

1 [root, book]| [the, flight, through, houston] SHIFT
2 [root, book, the] [flight, through, houston] SHIFT
3 [root, book, the. flight] [through, houston] LEFTARC
4 [root, book, flight] [through, houston| SHIFT
5 [root, book. flight, through] [houston] SHIFT
6 [root, book. flight, through. houston] [LEFTARC
7 [root, book, flight. houston | [] RIGHTARC
8 [root, book, flight] [] RIGHTARC
9 [root, book] [RIGHTARC
10 [root] [] Done

QIR ER] Generating training items consisting of configuration/predicted action pairs by
simulating a parse with a given reference parse.

Generating training examples

* Approach: simulate parsing to generate reference tree

Additional condition on
e Given RightArc makes sure a

: . , word is not removed from
* A current config with stack S, dependency relations Rc stack before its been

* Areference parse (V,Rp) attached to all its
e Do dependent

LEFTARC(r): if (S1 7 S2) €R,,

RIGHTARC(r): if (S2 7 S1) € R, and V', w s.t.(S; ' w) € R, then (S ' w) €
R

SHIFT: otherwise

Graph-based Dependency Parsing

Directed Spanning Trees

» A directed spanning tree of a (multi-)digraph G = (V, A), is a
subgraph G’ = (V’/, A) such that:
- V=V
» ACA and |A'| = |V/| -1
» G’ is a tree (acyclic)

» A spanning tree of the following (multi-)digraphs
O
/

OF— 0/4 i

Dependency Parsing
as Finding the Maximum Spanning Tree

* Views parsing as finding the best directed spanning tree
e of multi-digraph that captures all possible dependencies in a sentence
* needs a score that quantifies how good a tree is

* Assume we have an arc factored model
i.e. weight of graph can be factored as sum or product of weights of its arcs

e Chu-Liu-Edmonds algorithm can find the maximum spanning tree for us

* Recursive algorithm
* Naive implementation: O(n”"3)

Chu-Liu-Ec

(for unlabe

monds illustrated
ed dependency parsing)

Chu-Liu-Edmonads illustratea

» Find highest scoring incoming arc for each vertex

oot

] | R Wl 1

;) \

John __ 30 Mary

» |f this is a tree, then we have found MST!!

Chu-Liu-Edmonads illustratea

» If not a tree, identify cycle and contract

» Recalculate arc weights into and out-of cycle

/// z}lwfj—30
- Wi " \

“John .- Mary

o

Chu-Liu-Edmonads illustratea

/root 10 \ s 40

9 20" Tsquw 30 root o ’3\—.;\— 30

k / \ \ ///,;- .saw) \
John __ 30 0 __ Mary 20 " Tsquw 30 o , AB e

e / y, \ t John .-~ Mary
KB John __ 30 Mary \")\ 31 _/

» Outgoing arc weights

» Equal to the max of outgoing arc over all vertexes in cycle
» e.g., John — Mary is 3 and saw — Mary is 30

Chu-Liu-Edmonads illustratea

/ root 10 \ ’I‘OOtA 40

9 20 " squ 30 Toot ’\’/\— 30

L \, N - ; o e
John __ 30 - Mary 20 7 sawr 30 #7 38

» Incoming arc weights
» Equal to the weight of best spanning tree that includes head of
incoming arc, and all nodes in cycle
» root — saw — John is 40 (**)
» root — John — saw is 29

» This is a tree and the MST for the contracted graph!!

—

root
\ pN

e . saw 30
/// sz ,/ \
(" John .-~ Mary

’/

-

» Go back up recursive call and reconstruct final graph

Arc weights as linear classitiers

Weight of arc from
head i to dependent j,
with label k

W"j:e

» Arc weights are a linear combination of features of the arc, f,
and a corresponding weight vector w

» Raised to an exponent (simplifies some math ...)

» What arc features?

Example of classifier features

/N

John saw Mary McGuire yesterday with his telescope

N V. N N R P PR N

» Features from [McDonald et al. 2005]:
> ldentities of the words w; and w; and the label /;

head=saw & dependent=with

Typical classitier features

* Word forms, lemmmas, and parts of speech of the headword and its
dependent

e Corresponding features derived from the contexts before, after and
between the words

 Word embeddings
* The dependency relation itself
* The direction of the relation (to the right or left)

* The distance from the head to the dependent

How to score a graph G
using features?

Arc-factored model
assumption

By definition of arc weights

as linear classifiers

RN

G = arg max H Wg = arg max H ew f(’J k)
GeT(Gx) (ij.k)eG GeT(Gx) (ij,k)eG
— argmax log H (i k)
GeT(Gy) (i ket

= argmax Z w - f(i./, k)

GET(G) (i mec

= argmax W - Z f(i.j,k) = argmax w-f(G)

GET(Gx) (i.j,k)eG

GeT(Gy)

Learning parameters with the Structured Perceptron

Training data: 7 = {(x, Gt)}|7|

=1

1. w9 =0 i=0

2. forn:l..N

3. fof £il..T

4. Let G’ = argmax w') - f(G’)
5y if G' # G

6. witl) = wl) 1+ §(G,) — f(G')
Z. I=1+1

8. return w'

Dependency parsing algorithms

Transition-based Graph-based

* Locally trained * Globally trained

* Use greedy search algorithms * Use exact (or near exact) search
algorithms

* Define features over a rich
history of parsing decisions * Define features over a limited
history of parsing decisions

Dependency Parsing: what you should know

* Interpreting dependency trees

* Transition-based dependency parsing
* Shift-reduce parsing
* Transition system: arc standard, arc eager
* Oracle
* Learning/predicting parsing actions

* Graph-based dependency parsing

A flexible framework that allows many extensions
 RNNs vs feature engineering, non-projectivity

