COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Linear Models:
Nalve Bayes, Perceptron

CMSC 470
Marine Carpuat

Slides credit: Jacob Eisenstein

Linear Models for Multiclass Classification

Feature

function
representation

§ = argmax 8 ' f(x, y)
y

Nalve Bayes recap

— Define p(x, y) via a generative model
— Prediction: § = arg max, p(x;.y)
— Learning:

0 =arg 1’113;1.xp(m, y:0)

plx,y:0) Hp T, ;.0 Hp x|y)p(v:)

Zi:)’,:y Lij
" Z‘I.ZY,'Z‘U Z/ Lij

count(Y = y)
:“"!/ = 7*

()

This gives the maximum likelihood estimator (MLE; same as relative
frequency estimator)

Prediction with Naive Bayes

score(xy) =log P(X,y; o, it)
= log P(x|y; ®)P(y; 1)
= log P(x|y; @) + log P(y; 1)
= log Multinomial(x; ¢,) + log Cat(y;) Generative story assumptions

(ann)

Definition of conditional probability

! .
= log 1 % + Iog];I ®y'n + log iy
X Z Xn Iog q")y.n -+ |Og fLly This is a linear model!
n
=0"f(x, y)
where
0 =[log ¢{ , log 111, log s . log o, .. .]"

f(x,y)=[0,...,0.x',1,0,...,0]"

* Naive Bayes worked example on board

The perceptron

* A linear model for classification

* Prediction rule y = arg max HTf(Xa)/)
y

* An algorithm to learn feature weights given labeled data
* online algorithm
* error-driven

Multiclass perceptron

Algorithm 3 Perceptron learning algorithm

1: procedure PERCEPTRON(z(1:V) 4(1:NV))
2 t <0

% 00 0o

4: repeat

5: t—t+1

6 Select an instance i

7 Y argmax,, g(t—1) . f(a:(’i), y)

8 if j # y*) then

’ 8 « 041 + f(z,y) — f(x0,9)
10: else

11: o) . g(t—1)

12: until tired

13: return 8

Online vs batch learning algorithms

* In an online algorithm, parameter values are updated after every
example

* E.g., perceptron

* In a batch algorithm, parameter values are set after observing the
entire training set

* E.g., naive Bayes

Multiclass perceptron: a simple algorithm
with some theoretical guarantees

Definition 1 (Linear separability). The dataset D = {(z'V,y"))}.| is linearly separable iff

(if and only if) there exists some weight vector @ and some margin p such that for every instance
('), y), the inner product of @ and the feature function for the true label, 8 - f(x'V), y'V)), is
at least p greater than inner product of 6 and the feature function for every other possible label,
0 - f(x' o).

30,p>0: V(. ¢y eD, 0-fx,yV)>p+ ma:(»;)e-f(m“).y’). [2.35]
y'#Fy'

Theorem: If the data is linearly separable, then the perceptron
algorithm will find a separator (Novikoff, 1962)

Practical considerations

* In which order should we select instances?
» Shuffling before learning to randomize order helps

* How do we decide when to stop?

* When the weight values don’t change much

* E.g., norm of the difference between previous and current weight vectors falls below
some threshold

* When the accuracy on held out data starts to decrease
* Early stopping

ML fundame
overfitting/u

ntals as

ﬂ

ide:
derfitti

ng/generalization

Training error is not sufficient

* We care about generalization to new examples

* A classifier can classify training data perfectly, yet classify new
examples incorrectly
* Because training examples are only a sample of data distribution
» a feature might correlate with class by coincidence

* Because training examples could be noisy
e e.g., accident in labeling

Overfitting

* Consider a model 8 and its:
* Error rate over training data errory,.4i,, (0)
* True error rate over all data error;,,,.(6)

* We say h overfits the training data if
eTT0Ttrqin(0) < erroriyye(6)

Evaluating on test data

* Problem: we don’t know errory,,.(6)!

e Solution:

* we set aside a test set
* some examples that will be used for evaluation
* we don’t look at them during training!

 after learning a classifier 8, we calculate
errories:(0)

Overfitting

* Another way of putting it

A classifier 0 is said to overfit the training data, if there is another
hypothesis 6’, such that
* 0 has a smaller error than 8’ on the training data
* but 0 has larger error on the test data than 6.

Underfitting/Overfitting

e Underfitting

* Learning algorithm had the opportunity to learn more from training data, but
didn’t

* Overfitting

* Learning algorithm paid too much attention to idiosyncracies of the training
data; the resulting classifier doesn’t generalize

Back to the Perceptron

Averaged Perceptron improves generalization

Algorithm 4 Averaged perceptron learning algorithm

1: procedure AVG-PERCEPTRON(z1'V), ¢(1:N))
2 S ot U

3 00 +0

4 repeat

5 t1+1

6 Select an instance 7

7 y < argmax, 0¢=1 . (2 y)

8 if j # y'") then

’ 60 66D 4 f(2®,y®) - £(2,)
10: else
11: o) g(t-1)
12: m — m +)
13: until tired
14: 0 «— %m

15: return 0

Properties of Linear Models we've seen so far

Naive Bayes Perceptron
* Batch learning * Online learning
* Generative model p(x,y) Discriminative model score(y|x),

Guaranteed to converge if data

* Grounded in probability o
is linearly separable

* Assumes features are , , .
independent given class * But might overfit the training set

- Learning = find parameters that ~ * Error-driven learning

maximize likelihood of training
data

What you should know about linear models

* Their properties, strengths and weaknesses (see previous slides)
* How to make a prediction given a model

* How to train a model given a dataset

