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The logistic function

X: the input
@(x): vector of feature functions {(pl(x), (pz(x), o @ (X)}

w: the weight vector {w_,w , ..., w}
1 I

2

y: the prediction, +1 if “yes”, -1 if “no”

p(ylx)
P(ylx)

P

w*phi(x)

e “Softer” function than in perceptron
e Can account for uncertainty

e Differentiable

w*phi(x)



Logistic regression: how to train?

* Train based on conditional likelihood

* Find parameters w that maximize conditional likelihood of all answers
given examples Xx;

w =argmax Hi P(ylx;;w)



Stoc

nastic gradient ascent

(or c

escent)

* Online training algorithm

create map w
for / iterations
for each labeled pair x, y in the data
w +=a * dP(y|x)/dw

* Update weights for every training example

« Move in direction given by gradient
* Size of update step scaled by learning rate




Gradient of the logistic function
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How to set the learning rate?

* Various strategies
* decay over time

Number of

Parameter samples

* Use held-out test set, increase learning rate when likelihood increases



Logistic Regression
for Multiclass Classification



Logistic Regression: Prediction

* Find y that maximizes

eXp (9 ' f(él?, y))
yeyexp (0 f(z,y))

p(y | ;0) By



Logistic Regression: Training

* Find parameters that
e maximize the conditional likelihood

* of a training dataset 1 _ {(m(i) y(i)) N i
7 ==

N
logp(y" ) | 21V;0) =3 logp(y ) | 2; 6)
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y'ey



Logistic Regression: Gradient

lLocRec = — 0 - f(w(i)a y(i)) + log Z exXp (9 ' f(m(i)a y’)) [2.60]
y' €Y
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00 D yrey €XP (6 f(z®,y")) =
[2.61]
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ICANS yXejy e (0 7@,y <T@V [2.62]
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Observed feature Expected feature counts under the
counts current model




Learning as optimization: Loss Functions

* Loss function scores how bad a model predictions are on a training
set (or on a single example)

* Each of the linear models we’ve seen so far optimize a different loss
function

* Logistic regression minimizes the logistic loss

(rocrec(0: . y')) = =0 - f(x').y)) +1og > " exp(0 - f(z'.¢))
y'ey



Learning as optimization: Loss Functions

. Naive Bayes loss  ‘xs(0;2), ") = —log P( y; )

0 = argmin E Ung (0; iB(i)a y(i))
0 :
=1

= cugmax Z logp(x'”, (3) 400). ;0).
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[ } -
Zero-one loss 0, y; =argmax,8' f(z;,y)

f 9: Li,Y;) = .
perceptron( | i ) {1, OtherWISQ



Learning as optimization: Loss Functions

* Naive bayes loss
 can suffer infinite loss on a single example
* But the optimization problem has a closed form solution

e Zero-one loss

* most closely related to error rate
* but hon-convex and not continuous

* Logistic loss

* Never zero: the objective can always be improved by assigning higher confidence to
the correct label

e Convex and continuous



Regularization



Some models are
better then others...

e Consider these 2 examples

-1 he saw a bird in the park
+1 he saw a robbery in the park

 Which of the 2 models below is better?
~lassifier 1 TTETE

he +3 bird -1 Classifier 2 will probably
saw -5 robbery +1 generalize better!

gird+?i5 It does not include irrelevant
robbery +1 information

in +5 => Smaller model is better
the -3

park -2



Regularization

* Encodes a preference towards simpler models to avoid overfitting

* By augmenting the loss with a penalty on adding extra weights

L2 regularization: [lwll,

* big penalty on large weights s

* small penalty on small weights =4

= N W s O,

L1 regularization: lIwll
e Uniform increase when large or small
e Will cause many weights to become zero



What you should know about linear models

e Standard supervised learning set-up for text classification
* Difference between train vs. test data
* How to evaluate

* 3 examples of linear classifiers

* Naive Bayes, Perceptron, Logistic Regression
 How to make predictions, how to train, strengths and weaknesses

e Learning as optimization: loss functions and their properties
 Difference between generative vs. discriminative classifiers

* General machine learning concepts
* Smoothing, regularization, overfitting, underfitting



Neural Networks

“Machines” that learn combinations of features



Let’s go back to our Binary Classification Problem

Given an introductory sentence in Wikipedia
predict whether the article is about a person

Given Predict
Gonso was a Sanron sect priest (754-827) I
In the late Nara and early Heian periods. - Yes!

Shichikuzan Chigogataki Fudomyoo is Examble &
a historical site located at Magura, Maizuru » No! "

_ figures by
City, Kyoto Prefecture. Graham Neubig



Binary Classification with the Perceptron

y = sign(w-g(x))

I

sign i:_le'(Pi(X))

« X: the input
« @(x): vector of feature functions {9 (x), @,(x), ..., ¢ (X)}

. w: the weight vector {w , w_, ..., w}

 y: the prediction, +1 if “yes”, -1 if “no”
e (sign(v)is +1if v >=0, -1 otherwise)



Making Predictions with the Perceptron

P =1
Pt =1
Ptocated” = 1
OMaizuru™™ 1
¢or =2
Qe =1
(P“Kyoto” =1
(P“priest” =0
Peplack = 0

o

—_
v

OI\JO\O

sign <

I

i

1

w; - (bi(x)) — -1

Given

Gonso was a Sanron sect priest (754-827)
In the late Nara and early Heian periods.

Shichikuzan Chigogataki Fudomyoo is
a historical site located at Magura, Maizuru
City, Kyoto Prefecture.

Predict



The Perceptron:
Geometric interpretation



Limitation of perceptron

. can only find linear separations between positive and
negative examples



Binary Classification
with a Multi-layer Perceptron

(p“Site”




Multi-layer Perceptrons

are a kind of “Neural Network” (NN)

(P“Site”

Input (aka features)
Output

Nodes

Layers

Hidden layers
Activation function
(non-linear)



Example: binary classification with a NN

. Create two classifiers W
(Po[o] !
0ox) = £1 1} o) = {1, 1} N
o el @ol1] /H 0,[0]
1 7 -1
x\ 0ol0] 0y 6
O X Wo,1
(Po[o] -1
0o05) = {-1, -1} g(x) = {1, -1} N
@o[1] )SWH ¢ [1]
1 -1
b

0,1



Example: binary classification with a NN

. These classifiers map to a new space

Po(X1) ={-1, 1} @y(Xx;) = {1, 1} ¢, (%g) ={-1, 1}
1]
X_ 2 0O o
K ¢,[0]
O X - X O

(Pl(xl) - {'1’ _1} (Pl(XZ) - {11 '1}
(Pl(x4) = {'1’ _1}

L > o,[0]

Po(X3) ={-1, -1}, (x,) = {1, -1}

o e (Pl[l]




Example: binary classification with a NN

0o(X1) = {-1, 1} o,(x;) ={1, 1}
Pol1]

X O
K ©o[0] 1
X L ,[0] =y
@) X
0o(Xg) = {-1, -1} y(X,) = {1, -1} /

¢y[1]
k ] - ,[0] (Py(x%g) ={-1,13 O :
-1

-1 o \g (Pl[o]
1= [1]  o(x)={1-1}
1| M 1 X O () ={1, -1}

(Pl(x4) = {'1’ '1}

=

|




Example: the Final Net

0,[0] 1

oo[1] —L
1 -1

¢,[0]

0ol1]

tanh

tanh

tanh

= o,[0]

Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)




