
From Logistic Regression to
Neural Networks

CMSC 470

Marine Carpuat

Slides credit: Jacob Eisenstein

The logistic function

• “Softer” function than in perceptron

• Can account for uncertainty

• Differentiable

Logistic regression: how to train?

• Train based on conditional likelihood

• Find parameters w that maximize conditional likelihood of all answers
𝑦𝑖 given examples 𝑥𝑖

Stochastic gradient ascent
(or descent)
• Online training algorithm

• Update weights for every training example
• Move in direction given by gradient
• Size of update step scaled by learning rate

Gradient of the logistic function

How to set the learning rate?

• Various strategies
• decay over time

𝛼 =
1

𝐶 + 𝑡

• Use held-out test set, increase learning rate when likelihood increases

Parameter
Number of

samples

Logistic Regression
for Multiclass Classification

Logistic Regression: Prediction

• Find y that maximizes

Logistic Regression: Training

• Find parameters that

• maximize the conditional likelihood

• of a training dataset

Logistic Regression: Gradient

Expected feature counts under the
current model

Observed feature
counts

Learning as optimization: Loss Functions

• Loss function scores how bad a model predictions are on a training
set (or on a single example)

• Each of the linear models we’ve seen so far optimize a different loss
function

• Logistic regression minimizes the logistic loss

Learning as optimization: Loss Functions

• Naïve Bayes loss

• Zero-one loss

Learning as optimization: Loss Functions

• Naïve bayes loss
• can suffer infinite loss on a single example
• But the optimization problem has a closed form solution

• Zero-one loss
• most closely related to error rate
• but non-convex and not continuous

• Logistic loss
• Never zero: the objective can always be improved by assigning higher confidence to

the correct label
• Convex and continuous

Regularization

Some models are
better then others…
• Consider these 2 examples

• Which of the 2 models below is better?

Classifier 2 will probably
generalize better!
It does not include irrelevant
information
=> Smaller model is better

Regularization

• Encodes a preference towards simpler models to avoid overfitting

• By augmenting the loss with a penalty on adding extra weights

• L2 regularization:
• big penalty on large weights

• small penalty on small weights

• L1 regularization:
• Uniform increase when large or small

• Will cause many weights to become zero

𝑤 2

𝑤 1

What you should know about linear models

• Standard supervised learning set-up for text classification
• Difference between train vs. test data

• How to evaluate

• 3 examples of linear classifiers
• Naïve Bayes, Perceptron, Logistic Regression

• How to make predictions, how to train, strengths and weaknesses

• Learning as optimization: loss functions and their properties

• Difference between generative vs. discriminative classifiers

• General machine learning concepts
• Smoothing, regularization, overfitting, underfitting

Neural Networks
“Machines” that learn combinations of features

Let’s go back to our Binary Classification Problem

Given an introductory sentence in Wikipedia

predict whether the article is about a person

Example &
figures by
Graham Neubig

Binary Classification with the Perceptron

Making Predictions with the Perceptron

sign
𝑖=1

𝐼

𝑤𝑖 ⋅ ϕ𝑖 𝑥

φ“A” = 1

φ“site” = 1

φ“,” = 2

φ“located” = 1

φ“in” = 1

φ“Maizuru”= 1

φ“Kyoto” = 1

φ“priest” = 0

φ“black” = 0

0

-3

0
0

0

0
0
2
0

-1

The Perceptron:
Geometric interpretation

O

X O

X O

X

Limitation of perceptron

● can only find linear separations between positive and
negative examples

X

O

O

X

Binary Classification
with a Multi-layer Perceptron

φ“A” = 1

φ“site” = 1

φ“,” = 2

φ“located” = 1

φ“in” = 1

φ“Maizuru”= 1

φ“Kyoto” = 1

φ“priest” = 0

φ“black” = 0

-1

Multi-layer Perceptrons
are a kind of “Neural Network” (NN)

φ“A” = 1

φ“site” = 1

φ“,” = 2

φ“located” = 1

φ“in” = 1

φ“Maizuru”= 1

φ“Kyoto” = 1

φ“priest” = 0

φ“black” = 0

-1

• Input (aka features)

• Output

• Nodes

• Layers

• Hidden layers

• Activation function

(non-linear)

Example: binary classification with a NN
● Create two classifiers

X

O

O

X

φ
0
(x2) = {1, 1}φ

0
(x1) = {-1, 1}

φ
0
(x4) = {1, -1}φ

0
(x3) = {-1, -1}

sign

sign

φ
0
[0]

φ0[1]

1

1

1

-1

-1

-1

-1

φ
0
[0]

φ0[1]
φ

1
[0]

φ
0
[0]

φ0[1]

1

w
0,0

b
0,0

φ
1
[1]

w
0,1

b
0,1

Example: binary classification with a NN
● These classifiers map to a new space

X

O

O

X

φ
0
(x2) = {1, 1}φ

0
(x1) = {-1, 1}

φ
0
(x4) = {1, -1}φ

0
(x3) = {-1, -1}

1

1

-1

-1

-1

-1

φ1

φ2

φ
1
[1]

φ
1
[0]

φ1[0]

φ
1
[1]

φ
1
(x1) = {-1, -1}

X O
φ

1
(x2) = {1, -1}

O

φ
1
(x3) = {-1, 1}

φ
1
(x4) = {-1, -1}

Example: binary classification with a NN

X

O

O

X

φ
0
(x2) = {1, 1}φ

0
(x1) = {-1, 1}

φ
0
(x4) = {1, -1}φ

0
(x3) = {-1, -1}

1

1

-1

-1

-1

-1

φ0[0]

φ0[1]

φ
1
[1]

φ
1
[0]

φ
1
[0]

φ
1
[1]

φ
1
(x1) = {-1, -1}

X O φ
1
(x2) = {1, -1}

Oφ
1
(x3) = {-1, 1}

φ
1
(x4) = {-1, -1}

1

1

1
φ

2
[0] = y

Example: the Final Net

tanh

tanh

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

1

1

-1

-1

-1

-1

1 1

1

1

tanh

φ
1
[0]

φ
1
[1]

φ
2
[0]

Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)

