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The logistic function

• “Softer” function than in perceptron

• Can account for uncertainty

• Differentiable



Logistic regression: how to train?

• Train based on conditional likelihood

• Find parameters w that maximize conditional likelihood of all answers 
𝑦𝑖 given examples 𝑥𝑖



Stochastic gradient ascent 
(or descent)
• Online training algorithm

• Update weights for every training example
• Move in direction given by gradient
• Size of update step scaled by learning rate 



Gradient of the logistic function



How to set the learning rate?

• Various strategies
• decay over time

𝛼 =
1

𝐶 + 𝑡

• Use held-out test set, increase learning rate when likelihood increases

Parameter
Number of 

samples



Logistic Regression
for Multiclass Classification



Logistic Regression: Prediction

• Find y that maximizes



Logistic Regression: Training

• Find parameters that

• maximize the conditional likelihood 

• of a training dataset



Logistic Regression: Gradient

Expected feature counts under the 
current model

Observed feature 
counts



Learning as optimization: Loss Functions

• Loss function scores how bad a model predictions are on a training 
set (or on a single example)

• Each of the linear models we’ve seen so far optimize a different loss 
function

• Logistic regression minimizes the logistic loss



Learning as optimization: Loss Functions

• Naïve Bayes loss

• Zero-one loss



Learning as optimization: Loss Functions

• Naïve bayes loss
• can suffer infinite loss on a single example
• But the optimization problem has a closed form solution

• Zero-one loss 
• most closely related to error rate
• but non-convex and not continuous

• Logistic loss
• Never zero: the objective can always be improved by assigning higher confidence to 

the correct label
• Convex and continuous



Regularization



Some models are 
better then others…
• Consider these 2 examples

• Which of the 2 models below is better?

Classifier 2 will probably 
generalize better!
It does not include irrelevant 
information
=> Smaller model is better



Regularization

• Encodes a preference towards simpler models to avoid overfitting

• By augmenting the loss with a penalty on adding extra weights

• L2 regularization: 
• big penalty on large weights

• small penalty on small weights

• L1 regularization:
• Uniform increase when large or small

• Will cause many weights to become zero

𝑤 2

𝑤 1



What you should know about linear models

• Standard supervised learning set-up for text classification
• Difference between train vs. test data

• How to evaluate

• 3 examples of linear classifiers
• Naïve Bayes, Perceptron, Logistic Regression

• How to make predictions, how to train, strengths and weaknesses

• Learning as optimization: loss functions and their properties

• Difference between generative vs. discriminative classifiers

• General machine learning concepts
• Smoothing, regularization, overfitting, underfitting



Neural Networks 
“Machines” that learn combinations of features



Let’s go back to our Binary Classification Problem

Given an introductory sentence in Wikipedia

predict whether the article is about a person

Example & 
figures by 
Graham Neubig



Binary Classification with the Perceptron



Making Predictions with the Perceptron
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The Perceptron: 
Geometric interpretation
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Limitation of perceptron

● can only find linear separations between positive and 
negative examples
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Binary Classification 
with a Multi-layer Perceptron
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Multi-layer Perceptrons
are a kind of “Neural Network” (NN)
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• Input (aka features)

• Output 

• Nodes

• Layers

• Hidden layers

• Activation function 

(non-linear)



Example: binary classification with a NN
● Create two classifiers
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Example: binary classification with a NN
● These classifiers map to a new space
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Example: binary classification with a NN
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Example: the Final Net
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Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)


