

From Logistic Regression to Neural Networks

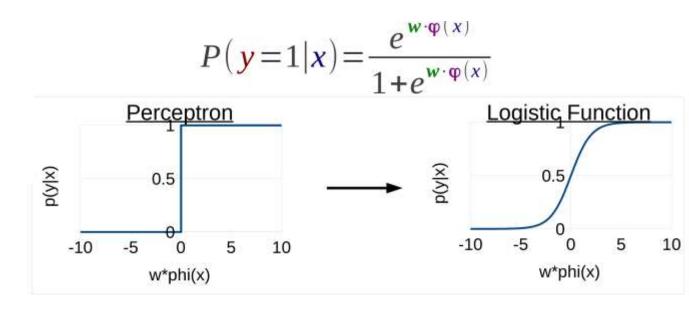
CMSC 470

Marine Carpuat

Slides credit: Jacob Eisenstein

The logistic function

- x: the input
- $\phi(x)$: vector of feature functions { $\phi_1(x), \phi_2(x), ..., \phi_1(x)$ }
- w: the weight vector {w₁, w₂, ..., w_i}
- y: the prediction, +1 if "yes", -1 if "no"



- "Softer" function than in perceptron
- Can account for uncertainty
- Differentiable

Logistic regression: how to train?

- Train based on **conditional likelihood**
- Find parameters w that maximize conditional likelihood of all answers y_i given examples x_i

$$\hat{\mathbf{w}} = \underset{\mathbf{w}}{\operatorname{argmax}} \prod_{i} P(\mathbf{y}_{i} | \mathbf{x}_{i}; \mathbf{w})$$

Stochastic gradient ascent (or descent)

• Online training algorithm

```
create map w

for / iterations

for each labeled pair x, y in the data

w += α * dP(y|x)/dw
```

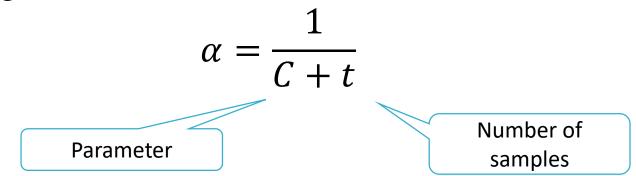
- Update weights for every training example
- Move in direction given by gradient
- Size of update step scaled by learning rate

Gradient of the logistic function

$$\frac{d}{dw}P(\mathbf{y}=1|\mathbf{x}) = \frac{d}{dw}\frac{e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})}}{1+e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})}}$$
$$= \mathbf{\varphi}(\mathbf{x})\frac{e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})}}{(1+e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})})^2}$$
$$\frac{d}{dw}P(\mathbf{y}=-1|\mathbf{x}) = \frac{d}{dw}(1-\frac{e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})}}{1+e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})}})$$
$$= -\mathbf{\varphi}(\mathbf{x})\frac{e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})}}{(1+e^{\mathbf{w}\cdot\mathbf{\varphi}(\mathbf{x})})^2}$$

How to set the learning rate?

- Various strategies
 - decay over time



• Use held-out test set, increase learning rate when likelihood increases

Logistic Regression for **Multiclass** Classification

Logistic Regression: Prediction

• Find y that maximizes

$$\mathbf{p}(y \mid \boldsymbol{x}; \boldsymbol{\theta}) = \frac{\exp\left(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y)\right)}{\sum_{y' \in \mathcal{Y}} \exp\left(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}, y')\right)}.$$

Logistic Regression: Training

- Find parameters that
 - maximize the conditional likelihood
 - of a training dataset $\mathcal{D} = \{(\pmb{x}^{(i)}, y^{(i)})\}_{i=1}^N$

$$\begin{split} \log \mathsf{p}(\boldsymbol{y}^{(1:N)} \mid \boldsymbol{x}^{(1:N)}; \boldsymbol{\theta}) &= \sum_{i=1}^{N} \log \mathsf{p}(y^{(i)} \mid \boldsymbol{x}^{(i)}; \boldsymbol{\theta}) \\ &= \sum_{i=1}^{N} \boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}^{(i)}, y^{(i)}) - \log \sum_{y' \in \mathcal{Y}} \exp\left(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}^{(i)}, y')\right). \end{split}$$

Logistic Regression: Gradient

$$\ell_{\text{LogReg}} = -\theta \cdot f(\boldsymbol{x}^{(i)}, y^{(i)}) + \log \sum_{\boldsymbol{y}' \in \mathcal{Y}} \exp\left(\theta \cdot f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')\right)$$

$$\frac{\partial \ell}{\partial \theta} = -f(\boldsymbol{x}^{(i)}, y^{(i)}) + \frac{1}{\sum_{\boldsymbol{y}'' \in \mathcal{Y}} \exp\left(\theta \cdot f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')\right)} \times \sum_{\boldsymbol{y}' \in \mathcal{Y}} \exp\left(\theta \cdot f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')\right) \times f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')$$

$$= -f(\boldsymbol{x}^{(i)}, y^{(i)}) + \sum_{\boldsymbol{y}' \in \mathcal{Y}} \frac{\exp\left(\theta \cdot f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')\right)}{\sum_{\boldsymbol{y}' \in \mathcal{Y}} \exp\left(\theta \cdot f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')\right)} \times f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')$$

$$= -f(\boldsymbol{x}^{(i)}, y^{(i)}) + \sum_{\boldsymbol{y}' \in \mathcal{Y}} p(\boldsymbol{y}' \mid \boldsymbol{x}^{(i)}; \theta) \times f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')$$

$$= -f(\boldsymbol{x}^{(i)}, y^{(i)}) + E_{\boldsymbol{Y}|\boldsymbol{X}}[f(\boldsymbol{x}^{(i)}, \boldsymbol{y})].$$

$$(2.61)$$

$$= -f(\boldsymbol{x}^{(i)}, y^{(i)}) + \sum_{\boldsymbol{y}' \in \mathcal{Y}} p(\boldsymbol{y}' \mid \boldsymbol{x}^{(i)}; \theta) \times f(\boldsymbol{x}^{(i)}, \boldsymbol{y}')$$

$$= -f(\boldsymbol{x}^{(i)}, y^{(i)}) + E_{\boldsymbol{Y}|\boldsymbol{X}}[f(\boldsymbol{x}^{(i)}, \boldsymbol{y})].$$

$$(2.64)$$

$$(2.64)$$

$$(2.64)$$

$$(2.64)$$

current model

Learning as optimization: Loss Functions

- Loss function scores how bad a model predictions are on a training set (or on a single example)
- Each of the linear models we've seen so far optimize a different loss function
- Logistic regression minimizes the logistic loss

$$\ell_{\text{LOGREG}}(\boldsymbol{\theta}; \boldsymbol{x}^{(i)}, y^{(i)}) = -\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}^{(i)}, y^{(i)}) + \log \sum_{y' \in \mathcal{Y}} \exp(\boldsymbol{\theta} \cdot \boldsymbol{f}(\boldsymbol{x}^{(i)}, y'))$$

Learning as optimization: Loss Functions

• Naïve Bayes loss $\ell_{\text{NB}}(\boldsymbol{\theta}; \boldsymbol{x}^{(i)}, y^{(i)}) = -\log p(\boldsymbol{x}^{(i)}, y^{(i)}; \boldsymbol{\theta})$ $\hat{\boldsymbol{\theta}} = \operatorname*{argmin}_{\boldsymbol{\theta}} \sum_{i=1}^{N} \ell_{\text{NB}}(\boldsymbol{\theta}; \boldsymbol{x}^{(i)}, y^{(i)})$ $= \operatorname*{argmax}_{\boldsymbol{\theta}} \sum_{i=1}^{N} \log p(\boldsymbol{x}^{(i)}, y^{(i)}; \boldsymbol{\theta}).$

Zero-one loss

$$\ell_{\text{perceptron}}(\boldsymbol{\theta}; \boldsymbol{x}_i, y_i) = \begin{cases} 0, & y_i = \arg \max_y \boldsymbol{\theta}^\top \boldsymbol{f}(x_i, y) \\ 1, & \text{otherwise} \end{cases}$$

Learning as optimization: Loss Functions

- Naïve bayes loss
 - can suffer infinite loss on a single example
 - But the optimization problem has a closed form solution
- Zero-one loss
 - most closely related to error rate
 - but non-convex and not continuous
- Logistic loss
 - Never zero: the objective can always be improved by assigning higher confidence to the correct label
 - Convex and continuous

Regularization

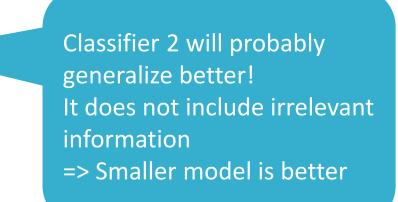
Some models are better then others...

• Consider these 2 examples

-1 he saw a bird in the park+1 he saw a robbery in the park

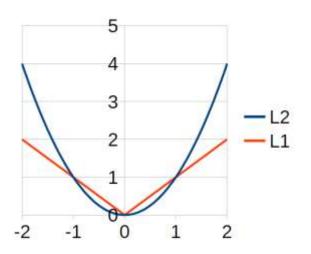
• Which of the 2 models below is better?

Classifier 1	Classifier 2
he +3	bird -1
saw -5	robbery +1
a +0.5	
bird -1	
robbery +1	
in +5	
the -3	
park -2	



Regularization

- Encodes a preference towards simpler models to avoid overfitting
- By augmenting the loss with a penalty on adding extra weights
- L2 regularization: $||w||_2$
 - big penalty on large weights
 - small penalty on small weights
- L1 regularization: $||w||_1$
 - Uniform increase when large or small
 - Will cause many weights to become zero



What you should know about linear models

- Standard supervised learning set-up for text classification
 - Difference between train vs. test data
 - How to evaluate
- 3 examples of linear classifiers
 - Naïve Bayes, Perceptron, Logistic Regression
 - How to make predictions, how to train, strengths and weaknesses
 - Learning as optimization: loss functions and their properties
 - Difference between generative vs. discriminative classifiers
- General machine learning concepts
 - Smoothing, regularization, overfitting, underfitting

Neural Networks

"Machines" that learn combinations of features

Let's go back to our Binary Classification Problem

Given an introductory sentence in Wikipedia predict whether the article is about a person

Example & figures by Graham Neubig

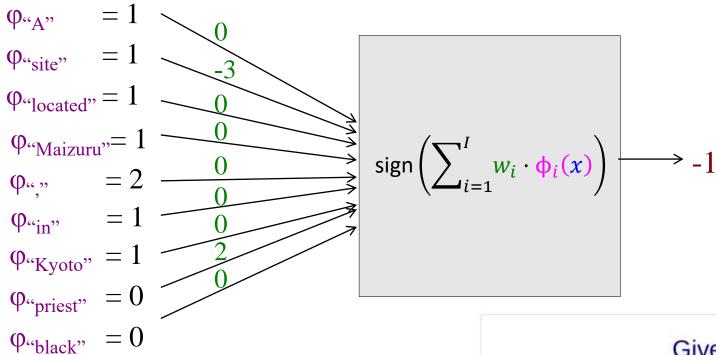
Binary Classification with the Perceptron

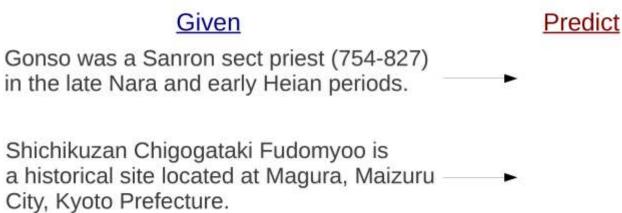
$$y = \operatorname{sign}(w \cdot \varphi(x))$$

= sign $\left(\sum_{i=1}^{I} w_i \cdot \varphi_i(x)\right)$

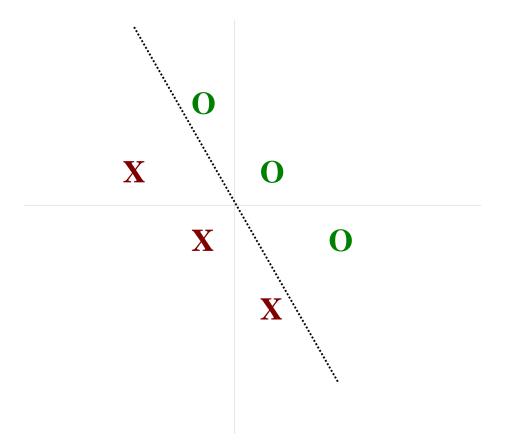
- x: the input
- $\varphi(x)$: vector of feature functions { $\varphi_1(x), \varphi_2(x), ..., \varphi_1(x)$ }
- w: the weight vector $\{w_1, w_2, ..., w_l\}$
- y: the prediction, +1 if "yes", -1 if "no"
 - (sign(v) is +1 if v >= 0, -1 otherwise)

Making Predictions with the Perceptron



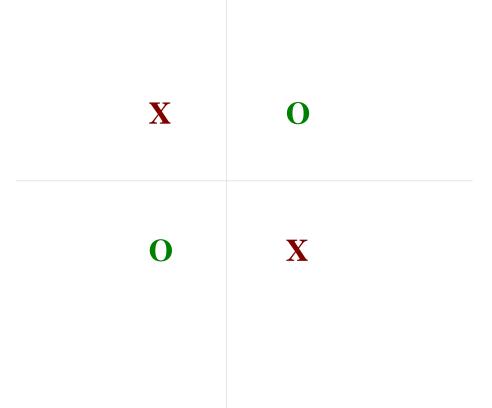


The Perceptron: Geometric interpretation

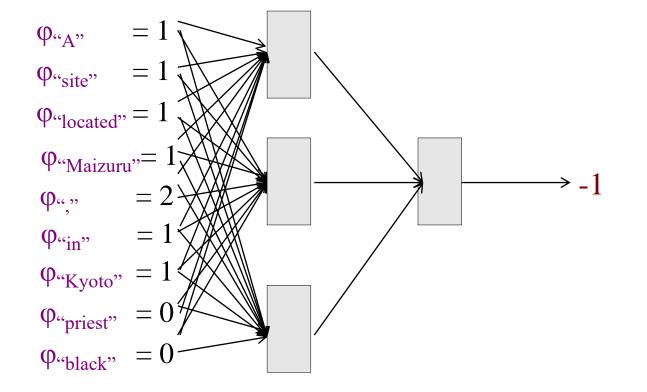


Limitation of perceptron

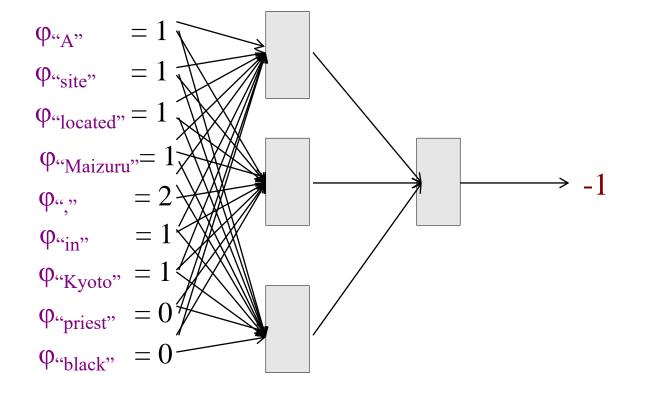
 can only find linear separations between positive and negative examples



Binary Classification with a Multi-layer Perceptron



Multi-layer Perceptrons are a kind of "Neural Network" (NN)



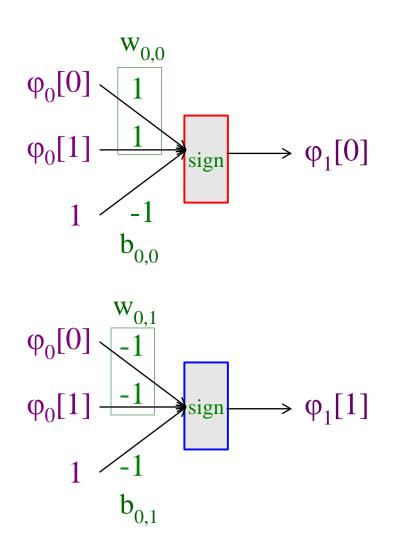
- Input (aka features)
- Output
- Nodes
- Layers
- Hidden layers
- Activation function (non-linear)

Example: binary classification with a NN

Create two classifiers

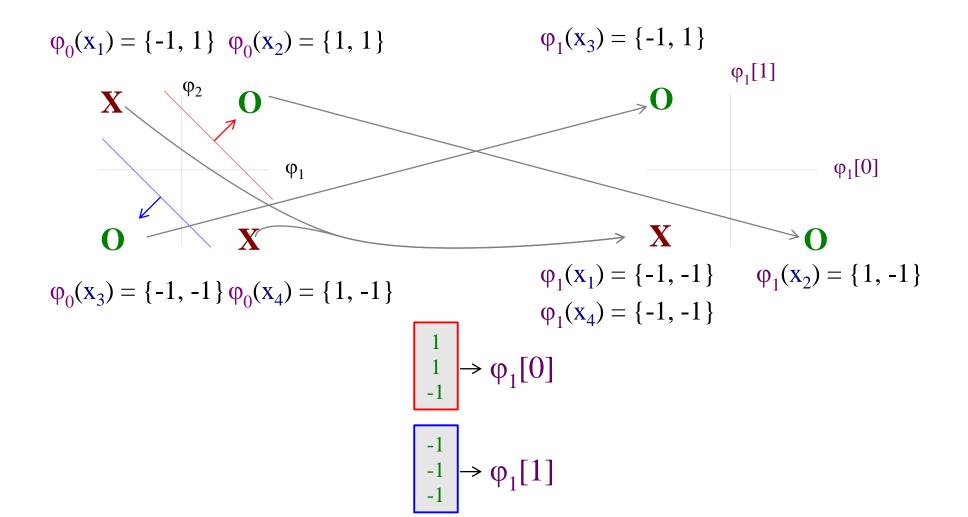
 $\varphi_{0}(\mathbf{x}_{1}) = \{-1, 1\} \quad \varphi_{0}(\mathbf{x}_{2}) = \{1, 1\}$ $\mathbf{X} \quad \varphi_{0}[1] \quad \mathbf{O} \quad \varphi_{0}[0]$ $\mathbf{O} \quad \mathbf{X}$

 $\varphi_0(\mathbf{x}_3) = \{-1, -1\} \ \varphi_0(\mathbf{x}_4) = \{1, -1\}$

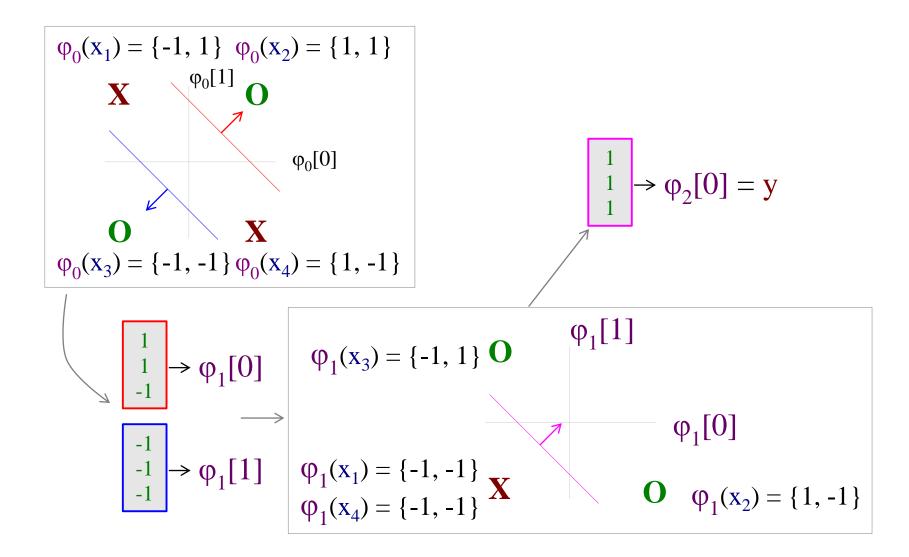


Example: binary classification with a NN

• These classifiers map to a new space



Example: binary classification with a NN



Example: the Final Net

