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Binary Classification
with a Multi-layer Perceptron
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Example: binary classification with a NN
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Example: the Final Net
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Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)




Multi-layer Perceptrons
are a kind of “Neural Network” (NN)
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Neural Networks as Computation Graphs
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Example & figures by Philipp Koehn




Computation Graphs Make Prediction Easy:
Forward Propagation




Computation Graphs Make Prediction Easy:
Forward Propagation
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Neural Networks as Computation Graphs

 Decomposes computation into simple operations over matrices and
vectors

* Forward propagation algorithm
* Produces network output given an output
* By traversing the computation graph in topological order



Neural Networks
for Multiclass Classification



Multiclass Classification

. The softmax function
eW ¢(x,y) <€ Current class

P(ylx)=

<— Sum of other classes

Exact same function as in multiclass logistic
regression



Example: A feedforward Neural Network
for 3-way Classification
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Designing Neural Networks:

Activation functions

* Hidden layer can be viewed as
set of hidden features

* The output of the hidden layer
indicates the extent to which
each hidden feature is
“activated” by a given input

 The activation function is a non-
linear function that determines
range of hidden feature values
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Designing Neural Networks:
Network structure

* 2 key decisions:
* Width (number of nodes per layer)
* Depth (number of hidden layers)

* More parameters means that the network can learn more
complex functions of the input



Neural Networks so far

Powerful non-linear models for classification

Predictions are made as a sequence of simple operations
* matrix-vector operations
* non-linear activation functions

Choices in network structure
 Width and depth
* Choice of activation function

Feedforward networks (no loop)

Next: how to train?



Training Neural Networks



How do we estimate the parameters (aka
“train”) a neural net?

For training, we need:
e Data: (a large number of) examples paired with their correct class

(X,y)
 Loss/error function: quantify how bad our prediction vy is compared to

the truth t
* Let’s use squared error:

1
error = §(t —y)?



Stochastic Gradient Descent

* We view the error as a function of the trainable parameters, on a
given dataset

* We want to find parameters that minimize the error

Start with some initial
arameter values
w =0 P Go through the training data

one example at a time

for | iterations
for each labeled pair x, y in the data —
derror(w, x, y)

aw Take a step down the
gradient

W=w-—U




Computation Graphs Make Training Easy:
Computing Error
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outation Graphs Make Training Easy:

outing Gradients
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Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node
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outation Graphs Make Training Easy:

outing Gradients




Com
Com

outation Graphs Make Training Easy:
outing Gradients
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Computation Graphs Make Training Easy:
Updating Parameters
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Computation Graph: A Powerful Abstraction

* To build a system, we only need to:
e Define network structure
 Define loss

* Provide data
* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
* Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.



Neural Networks

Powerful non-linear models for classification

Predictions are made as a sequence of simple operations
* matrix-vector operations
* non-linear activation functions

Choices in network structure
 Width and depth
* Choice of activation function

Feedforward networks (no loop)

Training with the back-propagation algorithm
* Requires defining a loss/error function
* Gradient descent + chain rule
* Easy to implement on top of computation graphs



