COMPUTER SCIENCE
UNIVERSITY OF MARYLAND

Neural Networks, Computation
Graphs

CMSC 470
Marine Carpuat

Binary Classification
with a Multi-layer Perceptron

(p“Site”

Example: binary classification with a NN

0o(X1) = {-1, 1} o,(x;) ={1, 1}
Pol1]

X O
K ©o[0] 1
X L ,[0] =y
@) X
0o(Xg) = {-1, -1} y(X,) = {1, -1} /

¢y[1]
k] - ,[0] (Py(x%g) ={-1,13 O :
-1

-1 o \g (Pl[o]
1= [1] o(x)={1-1}
1| M 1 X O () ={1, -1}

(Pl(x4) = {'1’ '1}

=

|

Example: the Final Net

0,[0] 1

oo[1] —L
1 -1

¢,[0]

0ol1]

tanh

tanh

tanh

= o,[0]

Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)

Multi-layer Perceptrons
are a kind of “Neural Network” (NN)

N
Pegier * Input (aka features)
(p“located”: 1 o OUtpUt
O , * Nodes (aka neuron)
((';‘%” * Layers

" » Hidden layers
(P“Kyoto” . . .
Do » Activation function

(non-linear)

Neural Networks as Computation Graphs

sig mmd

Example & figures by Philipp Koehn

Computation Graphs Make Prediction Easy:
Forward Propagation

Computation Graphs Make Prediction Easy:
Forward Propagation

I\./

Neural Networks as Computation Graphs

 Decomposes computation into simple operations over matrices and
vectors

* Forward propagation algorithm
* Produces network output given an output
* By traversing the computation graph in topological order

Neural Networks
for Multiclass Classification

Multiclass Classification

. The softmax function
eW ¢(x,y) <€ Current class

P(ylx)=

<— Sum of other classes

Exact same function as in multiclass logistic
regression

Example: A feedforward Neural Network
for 3-way Classification

Yy
A
e N\
Sigmoid
T function
Softmax)
() function (as
TC—rZ i P
~ :O.(@ -'L') in multi-class

logistic reg))

p(y | x; ey b) :SoftMax((-)<Z_’y)z + b)

From Eisenstein p66

Designing Neural Networks:

Activation functions

* Hidden layer can be viewed as
set of hidden features

* The output of the hidden layer
indicates the extent to which
each hidden feature is
“activated” by a given input

 The activation function is a non-
linear function that determines
range of hidden feature values

values

//____.———
B
_________ 4 —— sigmoid
tanh
- = RelLU
-3 -2 -1 0 1 2 3

Designing Neural Networks:
Network structure

* 2 key decisions:
* Width (number of nodes per layer)
* Depth (number of hidden layers)

* More parameters means that the network can learn more
complex functions of the input

Neural Networks so far

Powerful non-linear models for classification

Predictions are made as a sequence of simple operations
* matrix-vector operations
* non-linear activation functions

Choices in network structure
 Width and depth
* Choice of activation function

Feedforward networks (no loop)

Next: how to train?

Training Neural Networks

How do we estimate the parameters (aka
“train”) a neural net?

For training, we need:
e Data: (a large number of) examples paired with their correct class

(X,y)
 Loss/error function: quantify how bad our prediction vy is compared to

the truth t
* Let’s use squared error:

1
error = §(t —y)?

Stochastic Gradient Descent

* We view the error as a function of the trainable parameters, on a
given dataset

* We want to find parameters that minimize the error

Start with some initial
arameter values
w =0 P Go through the training data

one example at a time

for | iterations
for each labeled pair x, y in the data —
derror(w, x, y)

aw Take a step down the
gradient

W=w-—U

Computation Graphs Make Training Easy:
Computing Error

qngmond

Com
Com

dE
dA

outation Graphs Make Training Easy:

outing Gradients

dsum __ do

dprod m — diy

SR dE dBI dsi*moid
~ dB dA

dsum

Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node

m @
n() e
{2 9} pro 19,11

[.goL L

outation Graphs Make Training Easy:

outing Gradients

Com
Com

outation Graphs Make Training Easy:
outing Gradients

~ =

a @

2o) | B | 0260]" | 0308 0
? | o 10171] [
{—1.6} m —.0308]" [0

900 | puem—— o/(0) " B1TT
A7 | e el | 0308

Ivv

2.4

. |.0382 .0071‘2 [—_2:0
|

'[()4)4] 0424 0’1“
[b()] { 0424]

[.0277] [.23.:3]

Computation Graphs Make Training Easy:
Updating Parameters

37 37] [.01711 0

'i'; 20 29| “H*|_0308 0
.\ l r % - ,] . ‘.-.“‘ |

m @ | 1.6 | ¢ ['U“ LU]

i g 5] oy [143T
- 2 T TR 0308

prod | iz, 4 @2 [2.0] - p [.0424]

sigmoid o'(i)

Computation Graph: A Powerful Abstraction

* To build a system, we only need to:
e Define network structure
 Define loss

* Provide data
* (and set a few more hyperparameters to control training)

e Given network structure
* Prediction is done by forward pass through graph (forward propagation)
* Training is done by backward pass through graph (back propagation)
* Based on simple matrix vector operations

* Forms the basis of neural network libraries
* Tensorflow, Pytorch, mxnet, etc.

Neural Networks

Powerful non-linear models for classification

Predictions are made as a sequence of simple operations
* matrix-vector operations
* non-linear activation functions

Choices in network structure
 Width and depth
* Choice of activation function

Feedforward networks (no loop)

Training with the back-propagation algorithm
* Requires defining a loss/error function
* Gradient descent + chain rule
* Easy to implement on top of computation graphs

