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Binary Classification 
with a Multi-layer Perceptron
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Example: binary classification with a NN
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Example: the Final Net
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Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)



Multi-layer Perceptrons
are a kind of “Neural Network” (NN)
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• Input (aka features)

• Output 

• Nodes (aka neuron)

• Layers

• Hidden layers

• Activation function 

(non-linear)



Neural Networks as Computation Graphs

Example & figures by Philipp Koehn



Computation Graphs Make Prediction Easy:
Forward Propagation 



Computation Graphs Make Prediction Easy:
Forward Propagation 



Neural Networks as Computation Graphs

• Decomposes computation into simple operations over matrices and 
vectors

• Forward propagation algorithm
• Produces network output given an output

• By traversing the computation graph in topological order



Neural Networks 
for Multiclass Classification



Multiclass Classification 

● The softmax function

Exact same function as in multiclass logistic 
regression

𝑃 𝑦 ∣ 𝑥 =
𝑒𝐰⋅ϕ 𝑥,𝑦

  𝑦 𝑒𝐰⋅ϕ 𝑥,  𝑦

Current class

Sum of other classes



Example: A feedforward Neural Network
for 3-way Classification 

Sigmoid 
function

Softmax
function (as 

in multi-class 
logistic reg)

From Eisenstein p66



Designing Neural Networks:
Activation functions
• Hidden layer can be viewed as 

set of hidden features

• The output of the hidden layer 
indicates the extent to which 
each hidden feature is 
“activated” by a given input

• The activation function is a non-
linear function that determines 
range of hidden feature values



Designing Neural Networks:
Network structure

• 2 key decisions:
• Width (number of nodes per layer)

• Depth (number of hidden layers)

• More parameters means that the network can learn more 
complex functions of the input



Neural Networks so far

• Powerful non-linear models for classification

• Predictions are made as a sequence of simple operations
• matrix-vector operations

• non-linear activation functions

• Choices in network structure
• Width and depth

• Choice of activation function

• Feedforward networks (no loop)

• Next: how to train?



Training Neural Networks



How do we estimate the parameters (aka 
“train”) a neural net?
For training, we need:

• Data: (a large number of) examples paired with their correct class 
(x,y)

• Loss/error function: quantify how bad our prediction y is compared to 
the truth t
• Let’s use squared error:  



Stochastic Gradient Descent

• We view the error as a function of the trainable parameters, on a 
given dataset 

• We want to find parameters that minimize the error

w = 0
for I iterations

for each labeled pair x, y in the data

w = w − μ
𝑑error(w, x, y)

𝑑w

Start with some initial 
parameter values

Go through the training data 
one example at a time

Take a step down the 
gradient



Computation Graphs Make Training Easy:
Computing Error 



Computation Graphs Make Training Easy:
Computing Gradients



Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node



Computation Graphs Make Training Easy:
Computing Gradients



Computation Graphs Make Training Easy:
Computing Gradients



Computation Graphs Make Training Easy:
Updating Parameters



Computation Graph: A Powerful Abstraction

• To build a system, we only need to:
• Define network structure
• Define loss
• Provide data
• (and set a few more hyperparameters to control training)

• Given network structure
• Prediction is done by forward pass through graph (forward propagation)
• Training is done by backward pass through graph (back propagation)
• Based on simple matrix vector operations

• Forms the basis of neural network libraries
• Tensorflow, Pytorch, mxnet, etc.



Neural Networks

• Powerful non-linear models for classification

• Predictions are made as a sequence of simple operations
• matrix-vector operations

• non-linear activation functions

• Choices in network structure
• Width and depth

• Choice of activation function

• Feedforward networks (no loop)

• Training with the back-propagation algorithm
• Requires defining a loss/error function

• Gradient descent + chain rule

• Easy to implement on top of computation graphs


