
Neural Networks, Computation
Graphs

CMSC 470

Marine Carpuat

Binary Classification
with a Multi-layer Perceptron

φ“A” = 1

φ“site” = 1

φ“,” = 2

φ“located” = 1

φ“in” = 1

φ“Maizuru”= 1

φ“Kyoto” = 1

φ“priest” = 0

φ“black” = 0

-1

Example: binary classification with a NN

X

O

O

X

φ
0
(x2) = {1, 1}φ

0
(x1) = {-1, 1}

φ
0
(x4) = {1, -1}φ

0
(x3) = {-1, -1}

1

1

-1

-1

-1

-1

φ0[0]

φ0[1]

φ
1
[1]

φ
1
[0]

φ
1
[0]

φ
1
[1]

φ
1
(x1) = {-1, -1}

X O φ
1
(x2) = {1, -1}

Oφ
1
(x3) = {-1, 1}

φ
1
(x4) = {-1, -1}

1

1

1
φ

2
[0] = y

Example: the Final Net

tanh

tanh

φ
0
[0]

φ
0
[1]

1

φ
0
[0]

φ
0
[1]

1

1

1

-1

-1

-1

-1

1 1

1

1

tanh

φ
1
[0]

φ
1
[1]

φ
2
[0]

Replace “sign” with
smoother non-linear function

(e.g. tanh, sigmoid)

Multi-layer Perceptrons
are a kind of “Neural Network” (NN)

φ“A” = 1

φ“site” = 1

φ“,” = 2

φ“located” = 1

φ“in” = 1

φ“Maizuru”= 1

φ“Kyoto” = 1

φ“priest” = 0

φ“black” = 0

-1

• Input (aka features)

• Output

• Nodes (aka neuron)

• Layers

• Hidden layers

• Activation function

(non-linear)

Neural Networks as Computation Graphs

Example & figures by Philipp Koehn

Computation Graphs Make Prediction Easy:
Forward Propagation

Computation Graphs Make Prediction Easy:
Forward Propagation

Neural Networks as Computation Graphs

• Decomposes computation into simple operations over matrices and
vectors

• Forward propagation algorithm
• Produces network output given an output

• By traversing the computation graph in topological order

Neural Networks
for Multiclass Classification

Multiclass Classification

● The softmax function

Exact same function as in multiclass logistic
regression

𝑃 𝑦 ∣ 𝑥 =
𝑒𝐰⋅ϕ 𝑥,𝑦

 𝑦 𝑒𝐰⋅ϕ 𝑥, 𝑦

Current class

Sum of other classes

Example: A feedforward Neural Network
for 3-way Classification

Sigmoid
function

Softmax
function (as

in multi-class
logistic reg)

From Eisenstein p66

Designing Neural Networks:
Activation functions
• Hidden layer can be viewed as

set of hidden features

• The output of the hidden layer
indicates the extent to which
each hidden feature is
“activated” by a given input

• The activation function is a non-
linear function that determines
range of hidden feature values

Designing Neural Networks:
Network structure

• 2 key decisions:
• Width (number of nodes per layer)

• Depth (number of hidden layers)

• More parameters means that the network can learn more
complex functions of the input

Neural Networks so far

• Powerful non-linear models for classification

• Predictions are made as a sequence of simple operations
• matrix-vector operations

• non-linear activation functions

• Choices in network structure
• Width and depth

• Choice of activation function

• Feedforward networks (no loop)

• Next: how to train?

Training Neural Networks

How do we estimate the parameters (aka
“train”) a neural net?
For training, we need:

• Data: (a large number of) examples paired with their correct class
(x,y)

• Loss/error function: quantify how bad our prediction y is compared to
the truth t
• Let’s use squared error:

Stochastic Gradient Descent

• We view the error as a function of the trainable parameters, on a
given dataset

• We want to find parameters that minimize the error

w = 0
for I iterations

for each labeled pair x, y in the data

w = w − μ
𝑑error(w, x, y)

𝑑w

Start with some initial
parameter values

Go through the training data
one example at a time

Take a step down the
gradient

Computation Graphs Make Training Easy:
Computing Error

Computation Graphs Make Training Easy:
Computing Gradients

Computation Graphs Make Training Easy:
Given forward pass + derivatives for each node

Computation Graphs Make Training Easy:
Computing Gradients

Computation Graphs Make Training Easy:
Computing Gradients

Computation Graphs Make Training Easy:
Updating Parameters

Computation Graph: A Powerful Abstraction

• To build a system, we only need to:
• Define network structure
• Define loss
• Provide data
• (and set a few more hyperparameters to control training)

• Given network structure
• Prediction is done by forward pass through graph (forward propagation)
• Training is done by backward pass through graph (back propagation)
• Based on simple matrix vector operations

• Forms the basis of neural network libraries
• Tensorflow, Pytorch, mxnet, etc.

Neural Networks

• Powerful non-linear models for classification

• Predictions are made as a sequence of simple operations
• matrix-vector operations

• non-linear activation functions

• Choices in network structure
• Width and depth

• Choice of activation function

• Feedforward networks (no loop)

• Training with the back-propagation algorithm
• Requires defining a loss/error function

• Gradient descent + chain rule

• Easy to implement on top of computation graphs

