Introduction to Quantum Information Processing

Lecturer: Xiaodi Wu

Reading Assignment: Course Website; KLM Chap 1 and 2.
Welcome to CMSC 657: Introduction to Quantum Information Processing
Welcome to CMSC 657: Introduction to Quantum Information Processing

&

Happy New Academic Year!
Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)
Teaching Team

Instructor

- Instructor: Prof. Xiaodi Wu
- Contact: AVW 3257, xwu@cs.umd.edu
- Research: Quantum Information and Computation
- Joint Center for Quantum Information and Computer Science (QuICS)

TA

- Shouvanik Chakrabarti, shouv@cs.umd.edu
Why Quantum Computing?

- patiently waiting for your input
-
Quantum Computing

Tentative topics

- quantum mechanics of qubits; quantum circuits; quantum protocols;
Quantum Computing

Tentative topics

▶ quantum mechanics of qubits; quantum circuits; quantum protocols;
▶ quantum algorithms; Shor’s algorithm; Grover’s algorithm;
Quantum Computing

Tentative topics

▶ quantum mechanics of qubits; quantum circuits; quantum protocols;
▶ quantum algorithms; Shor’s algorithm; Grover’s algorithm;
▶ quantum complexity theory;
Quantum Computing

Tentative topics

- quantum mechanics of qubits; quantum circuits; quantum protocols;
- quantum algorithms; Shor’s algorithm; Grover’s algorithm;
- quantum complexity theory;
- coding experience of quantum clouds;
Quantum Computing

Tentative topics

- quantum mechanics of qubits; quantum circuits; quantum protocols;
- quantum algorithms; Shor’s algorithm; Grover’s algorithm;
- quantum complexity theory;
- coding experience of quantum clouds;
- selective quantum research frontiers.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
- (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
- (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
- (3) learn about the research frontier of one specific topic via the course project.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
- (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
- (3) learn about the research frontier of one specific topic via the course project.
- (4) get ready for research in the field of quantum information.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
- (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
- (3) learn about the research frontier of one specific topic via the course project.
- (4) get ready for research in the field of quantum information.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
- (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
- (3) learn about the research frontier of one specific topic via the course project.
- (4) get ready for research in the field of quantum information.

graduate level teaching

- Self-motivated.
CMSC 657: Teaching Philosophy

- (1) understand and comprehend the theoretical foundation of quantum information and computation.
- (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
- (3) learn about the research frontier of one specific topic via the course project.
- (4) get ready for research in the field of quantum information.

graduate level teaching

- Self-motivated.
- **Treat Reading Assignment Seriously!** Important to fill in the details of lectures.
CMSC 657: Teaching Philosophy

▶ (1) understand and comprehend the theoretical foundation of quantum information and computation.
▶ (2) cover a selective collection of fundamental topics in quantum algorithms, quantum complexity, and quantum error correcting codes.
▶ (3) learn about the research frontier of one specific topic via the course project.
▶ (4) get ready for research in the field of quantum information.

graduate level teaching

▶ Self-motivated.
▶ Treat Reading Assignment Seriously! Important to fill in the details of lectures.
▶ Research-oriented.
CMSC 657: Common Questions

There is NO required textbook. We will mainly refer to lecture notes (available online or our own) and the following textbooks.

KLM An Introduction to Quantum Computing, Oxford University Press (2007).

KSV Classical and Quantum Computation (Graduate Studies in Mathematics), AMS, 2002.

CMSC 657: Common Questions

There is NO required textbook. We will mainly refer to lecture notes (available online or our own) and the following textbooks.

KLM An Introduction to Quantum Computing, Oxford University Press (2007).

KSV Classical and Quantum Computation (Graduate Studies in Mathematics), AMS, 2002.

Skills to succeed?

- Math maturity (comfortable with proofs); linear algebra and matrix analysis !!
CMSC 657: Common Questions

There is NO required textbook. We will mainly refer to lecture notes (available online or our own) and the following textbooks.

KSV Classical and Quantum Computation (Graduate Studies in Mathematics), AMS, 2002.

Skills to succeed?

▶ Math maturity (comfortable with proofs); linear algebra and matrix analysis !!
Office Hours

- Wu: Tu 1:00 pm - 2:00 pm at AVW 3257, or by appointments.
- Chakrabarti: M W 1:00pm - 2:30 pm at AVW graduate student lounge.
More logistics

Office Hours

- Wu: Tu 1:00 pm - 2:00 pm at AVW 3257, or by appointments.
- Chakrabarti: M W 1:00pm - 2:30 pm at AVW graduate student lounge.

Websites

- Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
More logistics

Office Hours

▶ Wu: Tu 1:00 pm - 2:00 pm at AVW 3257, or by appointments.
▶ Chakrabarti: M W 1:00pm - 2:30 pm at AVW graduate student lounge.

Websites

▶ Course website: syllabus, reading assignments, handouts, and so on. Check Frequently!!.
▶ Piazza: announcements, discussion forum, ask for helps.
More logistics

Office Hours

- Wu: Tu 1:00 pm - 2:00 pm at AVW 3257, or by appointments.
- Chakrabarti: M W 1:00pm - 2:30 pm at AVW graduate student lounge.

Websites

- **Course website**: syllabus, reading assignments, handouts, and so on. Check **Frequently!!**.
- **Piazza**: announcements, discussion forum, ask for helps.
- **ELMS**: distribute and submit assignments, grades, solutions.
Important things to check from the course website

- Course Policy.
- Syllabus.
- Projects.

Please let me know ASAP if
- you cannot submit assignments electronically.
- time conflicts of exams.
- concerns about the difficulty of the course.
- anything that you wanted to discuss
Important things to check from the course website

- Course Policy.
- Syllabus.
- Projects.

Please let me know ASAP if

- you cannot submit assignments electronically.
- time conflicts of exams.
- concerns about the difficulty of the course.
- anything that you wanted to discuss
You might be interested in ...

Workshop on Quantum Machine Learning

- Date(s): Sep 24 - 28. Hosted at QuICS.
- http://qml2018.quics.umd.edu/
You might be interested in ...

Workshop on Quantum Machine Learning

- Date(s): Sep 24 - 28. Hosted at QuICS.
- http://qml2018.quics.umd.edu/

Some interested projects of QuICS

- Circuit Compilation and Optimization. e.g., try IBM QISKit Developer Challenge.
- Quantum Programming Languages.
- Quantum Algorithms for Optimization.
-
Reading Assignments on Linear Algebra

Linear algebra with Dirac notations

- KLM 2.1-2.6.
- A cheatsheet on our website.
- Optional exercise also on our website.