# CMSC 714 High Performance Computing Lecture 1 - Introduction

http://www.cs.umd.edu/class/fall2018/cmsc714
Alan Sussman

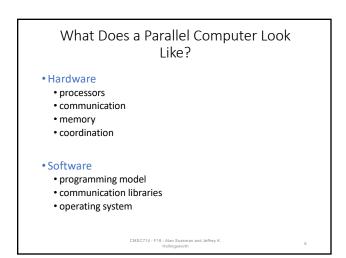
### Introduction

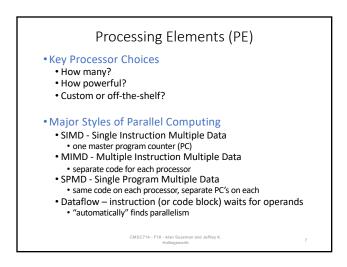
- Class is an introduction to parallel computing
  - topics include: hardware, applications, compilers, system software, and tools
- Counts for Masters/PhD Comp Credit
- Work required
  - small programming assignments (two) MPI and OpenMP
  - midterm
  - classroom participation
    - Everyone will have to prepare questions for the readings for several classes (4 students per class with readings), and help explain the papers
  - group project (3-4 students per group)

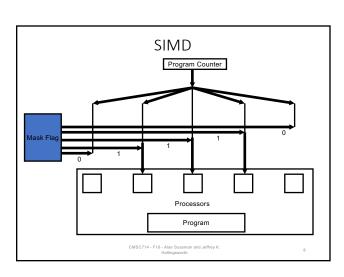
CMSC714 - F18 - Alan Sussman and Jeffrey K. Hollingsworth

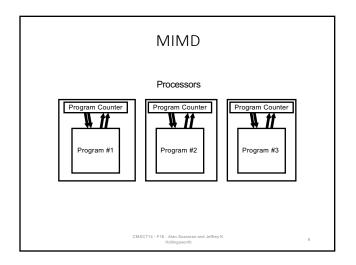
### What is Parallel Computing?

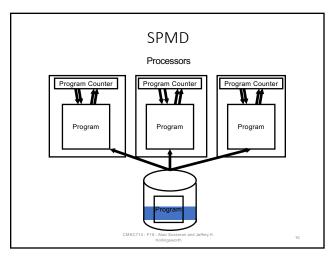
- Does it include:
  - super-scalar processing (more than one instruction at once)?
  - client/server computing?
    - what if RPC calls are non-blocking?
  - vector processing (same instruction to several values)?
  - collection of PC's not connected to a (fast) network?
- For this class, parallel computing requires:
  - more than one processing element
  - nodes connected to a communication network
  - nodes working together to solve a single problem

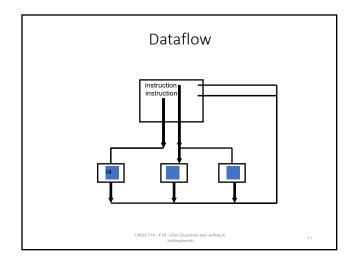

CMSC714 - F18 - Alan Sussman and Jeffrey K. Hollingsworth

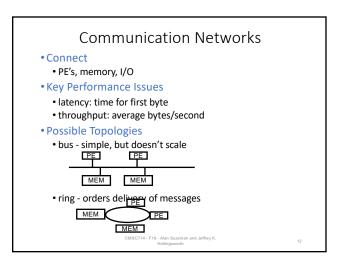

### Why Parallelism

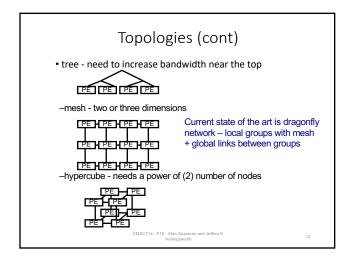

- Speed
  - need to get results faster than possible with sequential
    - a weather forecast that is late is useless
  - could come from
    - more processing elements (P.E.'s)
    - more memory (or cache)
    - more disks/secondary storage
- Cost: cheaper to buy many smaller machines
  - this is only relatively recently true due to
    - VLSI
    - commodity parts


CMSC714 - F18 - Alan Sussman and Jeffrey K. Hollingsworth


# Parallel Architecture CMSC714-FI8-Alan Susaman and Jeffrey K. 6














## Memory Systems

- Key Performance Issues
  - latency: time for first byte
  - throughput: average bytes/second
- Design Issues
  - Where is the memory

    - divided among each node
       centrally located (on communication network)
  - Access by processors
    - can all processors get to all memory?
    - is the access time uniform?
      - UMA vs. NUMA

CMSC714 - F18 - Alan Sussman and Jeffrey K. Hollingsworth