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CMSC 714
High Performance Computing

Lecture 2 - Introduction
http://www.cs.umd.edu/class/fall2018/cmsc714

Alan Sussman

Notes

• Accounts handed out and first assignment probably 
late next week
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Last time

• Why parallel computing?
• speed, cost

• Parallel computing basics
• Processing elements, memory, network, disks
• SIMD, MIMD, SPMD, dataflow
• networks

• bus, ring, tree, mesh (2D or 3D), hypercube
• memory

• latency and throughput (bandwidth)
• shared vs. distributed (physically and logically)
• UMA vs. NUMA
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Coordination

• Since parallelism in our view is processors working 
together to solve a problem

• Synchronization
• protection of a single object (e.g., locks)
• coordination of processors (e.g., barriers)

• Size of a unit of work by a processor
• need to manage two issues

• load balance - processors have equal work
• coordination overhead - communication and synchronization

• often called “grain” size - coarse grain vs. fine grain
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Sources of Parallelism

• Statements
• called “control parallel”
• can perform a series of steps in parallel
• basis of dataflow computers

• Loops
• called “data parallel”
• most common source of parallelism for most programs
• each processor gets one (or more) iterations to perform
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Examples of Parallelism
• Easy (embarrassingly parallel)

• multiple independent jobs (i.e..., different simulations)
• Scientific

• dense linear algebra (divide up matrix)
• physical system simulations (divide physical space)

• Databases 
• biggest success of parallel computing (divide tuples)

• exploits semantics of relational algebra

• AI
• search problems (divide search space)
• pattern recognition and image processing (divide image)
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Metrics in Application Performance
• Speedup

• ratio of time on one node to time on n nodes
• hold problem size fixed
• should really compare to best serial time
• goal is linear speedup
• super-linear speedup is possible due to:

• adding more memory/cache

• search problems

• Iso-Speedup (or scaled speedup)
• scale data size up with number of nodes

• goal is a flat horizontal curve

• Amdahl's Law
• max speedup is 1/(serial fraction of time), or

1 / (1 – f + f/s) as s →∞

• Computation to Communication Ratio
• goal is to maximize this ratio
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How to Write Parallel Programs

• Use old serial code 
• compiler converts it to parallel
• called the dusty deck problem

• Serial Language plus Communication Library
• no compiler changes required!
• PVM and MPI use this approach

• New language for parallel computing
• requires all code to be re-written
• hard to create a language that provides high performance on 

different platforms
• Hybrid Approach – old language(s), new constructs

• HPF - add data distribution commands to code
• add parallel loops and synchronization operations
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Application Example - Weather

• Typical of many scientific codes
• computes results for three dimensional space
• compute results at multiple time steps
• uses equations to describe physics/chemistry of the 

problem
• grids are used to discretize continuous space

• granularity of grids is important to speed/accuracy

• Simplifications (for example, not in real code)
• earth is flat (no mountains)
• earth is round (poles are really flat, earth bulges at 

equator)
• second order properties
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Grid Points
• Divide Continuous space into discrete parts

• for this code, grid size is fixed and uniform
• possible to change grid size or use multiple grids

• use three dimensional grid
• two for latitude and longitude
• one for elevation
• Total of M * N * L points

• Design Choice: where is the grid point?
• left, right, or center of the interval for a grid element

• in multiple dimensions this multiplies: 
• for 3 dimensions have 27 possible positions

C RL
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Variables
• One dimensional

• m - geo-potential (gravitational effects)
• Two dimensional

• pi - “shifted” surface pressure
• sigmadot - vertical component of the wind velocity

• Three dimensional (primary variables)
• <u,v> - wind velocity/direction vector
• T - temperature
• q - specific humidity
• p - pressure

• Not included
• clouds
• precipitation
• can be derived from others
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Serial Computation
• Convert equations to discrete form
• Update from time t to t + δt

foreach longitude, latitude, altitude
ustar[i,j,k] = n * pi[i,j] * u[i,j,k]
vstar[i,j,k] = m[j] * pi[i,j] * v[i,j,k]
sdot[i,j,k] = pi[i,j] * sigmadot[i,j]

end
foreach longitude, latitude, altitude

D = 4 * ((ustar[i,j,k] + ustar[i-1,j,k]) * (q[i,j,k] + q[i-1,j,k]) +
terms in {i,j,k}{+,-}{1,2}

piq[i,j,k] = piq[i,j,k] + D * delat
similar terms for piu, piv, piT, and pi

end
foreach longitude, latitude, altitude

q[i,j,k] = piq[i,j,k]/pi[i,j,k]
u[i,j,k] = piu[i,j,k]/pi[i,j,k]
v[i,j,k] = piv[i,j,k]/pi[i,j,k]
T[i,j,k] = piT[i,j,k]/pi[i,j,k]

end
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Shared Memory Version

• in each loop nest, iterations are independent
• use a parallel for-loop for each loop nest
• synchronize (barrier) after each loop nest

• this is overly conservative, but works
• could use a single sync variable per element, but would incur 

excessive overhead
• potential parallelism is M * N * L
• private variables: D, i, j, k
• Advantages of shared memory

• easier to get something working (ignoring performance)
• Hard to debug

• other processors can modify shared data
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Distributed Memory Version
• decompose data to specific processors

• assign a cube to each processor
• maximize volume to surface ratio
• which minimizes communication/computation ratio

• called a <block,block,block> distribution

• need to communicate {i,j,k}{+,-}{1,2} terms at boundaries
• use send/receive to move the data
• no need for barriers, send/receive operations provide sync

• do sends earlier in computation to hide communication time
• Advantages

• easier to debug? maybe
• consider data locality explicitly with data decomposition

• better performance/scaling

• Problems
• harder to get the code running
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Database Applications
• Too much data to fit in memory (or sometimes disk)

• data mining applications (K-Mart had a 4-5TB database several 
years ago)

• imaging applications (NASA and others have sites with 
multiple petabytes)

• use a fork lift to load tapes by the pallet

• Sources of parallelism
• within a large transaction
• among multiple transactions 

• Join operation
• form a single table from two tables based on a common field
• try to split join attribute into disjoint buckets

• if know data distribution is uniform its easy
• if not, try hashing
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Parallel Search (TSP)
• may appear to be faster than 1/n

• but this is not really the case either
• Algorithm

• compute a path on a processor 
• if our path is shorter than the shortest one, send it to the others.
• stop searching a path when it is longer than the shortest.

• before computing next path, check for word of a new 
min path

• stop when all paths have been explored.
• Why it appears to be faster than 1/n speedup

• we found the path that was shorter sooner
• however, the reason for this is a different search order!
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Ensuring a fair speedup
• Tserial = fastest of

• best known serial algorithm
• simulation of parallel computation

• use parallel algorithm
• run all processes on one processor

• parallel algorithm run on one processor
• If speedup appears to be super-linear

• check for memory hierarchy effects
• increased cache or real memory may be reason

• verify order of operations is the same in parallel and serial 
cases
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