
CMSC 714
Lecture 5

OpenMP and UPC

Alan Sussman

Notes

• MPI project due week from Friday, Sept. 21
• any questions about project spec, or running on

deepthought2 cluster?
• Don't forget to send questions for readings

• additional readings posted today, with who should send
questions

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 2

OpenMP
• Support Parallelism for SMPs

• provide a simple portable model
• allows both shared and private data
• provides parallel do loops

• Includes
• automatic support for fork/join parallelism
• reduction variables
• atomic statement

• one process executes at a time
• single statement

• only one process runs this code (first thread to reach it)
• plus a lot more

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 3

OpenMP
• Characteristics

• Both thread-local & shared memory (depending on
directives)

• Parallelism : directives for parallel loops, functions
• Compilers convert programs into multi-threaded (i.e.

pthreads)
• Not available on clusters

• Example

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

#pragma omp parallel for private(i)
for (i=0; i<NUPDATE; i++) {

int ran = random();
table[ran & (TABSIZE-1)] ^= stable[ran >> (64-LSTSIZE)];

}

4

More on OpenMP
• Characteristics

• Not a full parallel language, but a language extension
• A set of standard compiler directives and library routines
• Used to create parallel Fortran, C and C++ programs
• Usually used to parallelize loops
• Standardizes last 15-20 years of SMP practice

• Implementation
• C compiler directives using #pragma omp <directive>
• Parallelism can be specified for regions & loops
• Data can be

• Private – each thread has local copy
• Shared – single copy for all threads

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 5

OpenMP – Programming Model
• Fork-join parallelism (restricted form of MIMD)

• Normally single thread of control (master)
• Worker threads spawned when parallel region

encountered
• Barrier synchronization required at end of parallel region

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

Master
Thread

Parallel Regions

6

OpenMP – Example Parallel Region
• Task level parallelism – #pragma omp parallel { … }

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

double a[1000];
omp_set_num_threads(4);
#pragma omp parallel
{

int id = omp_thread_num();
foo(id,a);

}
printf(“all done \n”);

double a[1000];

#pragma omp parallel

foo(3,a);

printf(“all done \n”);

foo(2,a);foo(1,a);foo(0,a);

omp_set_num_threads(4);

OpenMP
compiler

7

OpenMP – Example Parallel Loop

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

#pragma omp parallel
{

int id, i, nthreads,start, end;
id = omp_get_thread_num();
nthreads = omp_get_num_threads();
start = id * N / nthreads ; // assigning
end = (id+1) * N / nthreads ; // work
for (i=start; i<end; i++) {

foo(i);
}

}

#pragma omp parallel for
for (i=0;i<N;i++) {

foo(i);
}

◆ Loop level parallelism – #pragma omp parallel for
- Loop iterations are assigned to threads, invoked as functions

OpenMP
compiler

8

Sample C OpenMP Code
int main() {

int n, i;
double w, x, sum, pi;
printf(“Enter number of intervals: \n”);
scanf(“%d”, &n);
/* calculate the interval size */
w = 1.0;
sum = 0.0;

#pragma omp parallel for private(x), shared(w), reduction(+: sum)
for (i = 1; i <= n; i++) {

x = w * (i - 0.5);
sum = sum + f(x);

}
pi = w * sum;
printf (“computed pi = %f\n”, pi);

}
/* function to integrate */
double f(double a) {

return (2.0 / (1.0 + a*a));
}

Alan Sussman, University of Maryland

Sample Fortran77 OpenMP Code
program compute_pi

integer n, i
double precision w, x, sum, pi, f, a

c function to integrate
f(a) = 4.d0 / (1.d0 + a*a)
print *, “Enter number of intervals: “
read *,n

c calculate the interval size
w = 1.0d0/n
sum = 0.0d0

!$OMP PARALLEL DO PRIVATE(x), SHARED(w)
!$OMP& REDUCTION(+: sum)

do i = 1, n
x = w * (i - 0.5d0)
sum = sum + f(x)

enddo
pi = w * sum
print *, “computed pi = “, pi
stop
end

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 10

UPC

• Extension to C for parallel computing
• a Partitioned Global Address Space (PGAS) language
• others include Titanium (Java) and Co-Array Fortran (part

of the current Fortran standard)
• Target Environment

• Distributed memory machines
• Cache Coherent multi-processors

• Features
• Explicit control of data distribution
• Includes parallel for statement

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 11

UPC
• Characteristics

• Local memory, shared arrays accessed by global pointers
• Parallelism : single program on multiple nodes (SPMD)
• Provides illusion of shared one-dimensional arrays
• Features

• Data distribution declarations for arrays
• Cast global pointers to local pointers for efficiency
• One-sided communication routines (memput / memget)

• Compilers translate global pointers, generate
communication

• Example

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth

shared int *x, *y, z[100];

upc_forall (i = 0; i < 100; i++) { z[i] = *x++ * *y++; }

12

UPC Execution Model

• SPMD-based
• One thread per process
• Each thread starts with same entry to main

• Different consistency models possible
• “strict” model is based on sequential consistency
• “relaxed” based on release consistency

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 13

Forall Loop

• Forms basis of parallelism
• Add fourth parameter to for loop, “affinity”

• Where code is executed is based on “affinity”
• Lacks explicit barrier before/after execution

• Differs from OpenMP
• Supports nested forall loops

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 14

Split-phase Barriers
• Traditional Barriers

• Once enter barrier, busy-wait until all threads arrive
• Split-phase

• Announce intention to enter barrier (upc_notify)
• Perform some local operations
• Wait for other threads (upc_wait)

• Advantage
• Allows work while waiting for processes to arrive

• Disadvantage
• Must find work to do
• Takes time to communicate both notify and wait

CMSC 714 - Alan Sussman & Jeffrey K. Hollingsworth 15

