
CMSC 714
Lecture 6

MPI vs. OpenMP
and OpenACC

Alan Sussman

Notes

• MPI project due Friday, 6PM
• Questions on project?

• OpenMP project posted after MPI project due date
• More readings posted

• Don’t forget to send questions if you are assigned

CMSC 714 - Alan Sussman 2

OpenMP + MPI
• Some applications can take advantage of both

message passing and threads
• Questions is what to do to obtain best overall

performance, without too much programming difficulty
• Choices are all MPI, all OpenMP, or both

• For both, common option is outer loop parallelized with message
passing, inner loop with directives to generate threads

• Applications studied:
• Hydrology – CGWAVE
• Computational chemistry – GAMESS
• Linear algebra – matrix multiplication and QR

factorization
• Seismic processing – SPECseis95
• Computational fluid dynamics – TLNS3D
• Computational physics - CRETIN

CMSC 714 - Alan Sussman 3

Types of parallelism in the codes

• For message passing parallelism (MPI)
• Parametric – coarse-grained outer loop, essentially task parallel
• Structured domains – domain decomposition with local

operations – structured and unstructured grids
• Direct solvers – linear algebra, lots of communication and load

balancing required – message passing works well for large
systems of equations

• Shared memory parallelism (OpenMP)
• Statically scheduled parallel loops – one large, or several

smaller loops, non-nested parallel
• Parallel regions – merge loops into one parallel region to

reduce overhead of directives
• Dynamic load balanced – when static scheduling leads to load

imbalance from irregular task sizes

CMSC 714 - Alan Sussman 4

CGWAVE
• Finite elements - MPI parameter space evaluation at outer loop,

OpenMP sparse linear equation solver in inner loops
• Speedup using 2 levels of parallelism allows modeling larger bodies of

water in a reasonable amount of time
• Master-worker strategy for dynamic load balancing in MPI

part/component
• Solver for each component solves large sparse linear system with

OpenMP to parallelize
• On SGI Origin 2000 (distributed shared memory machine), use first touch

rule to migrate data for each component to the processor that uses it
• Performance results show that best performance obtained using both

MPI and OpenMP, with a combination of MPI workers and OpenMP
threads that depends on the problem/grid size

• And for load balancing, a lot fewer MPI workers than components

CMSC 714 - Alan Sussman 5

GAMESS
• Computational chemistry – molecular dynamics –

MPI across cluster, OpenMP within each node
• Built on top of Global Arrays package – for

distributed array operations
• Which in turn uses MPI (paper says PVM) and OpenMP

• Linear algebra solvers mainly use OpenMP for
dynamic scheduling and load balancing

• MPI versions of parts of code are complex, but can
provide higher performance for large problems

• Performance results on “medium” sized problem
from SPEC (Standard Performance Evaluation
Corp.) are for a small system (4 8-processor Alpha
machines) connected by Memory Channel

CMSC 714 - Alan Sussman 6

Linear algebra

• Hybrid parallelism with MPI for scalability and OpenMP
for load balancing, for MM and QR factorization

• On IBM SP system with multiple 4-processor nodes
• Studies tradeoffs of hybrid approach for linear algebra

algorithms vs. only using MPI (running 4 MPI processes
per node)

• Use OpenMP for load balancing and decreasing
communication costs within a node

• Also helps to hide communication latency behind other
operations – important for overall performance

• QR factorization results on “medium” sized matrices
show that adaptive load balancing is better than
dynamic loop scheduling within a node

CMSC 714 - Alan Sussman 7

SPECseis95

• For gas and oil exploration
• Uses FFTs and finite-difference solvers

• Original message passing version (in PVM) is SPMD,
OpenMP starts serial then starts an SPMD parallel
section

• In OpenMP version, shared data is only boundaries, everything
else local (like PVM version)

• OpenMP calls all in Fortran – no C OpenMP compiler – caused
difficulties for privatizing C global data, and thread issues
(binding to processors, OS calls)

• Code scales equally well for PVM and OpenMP, on SGI
Power Challenge (a DSM machine)

• This is a weak argument, because of likely poor PVM message
passing performance (in general, and especially on DSM
systems)

CMSC 714 - Alan Sussman 8

TLNS3D
• CFD in Fortran77, uses MPI across grids and OpenMP to parallelize each

grid
• Multiple, non-overlapping grids/blocks that exchange data at

boundaries periodically
• Static block assignment to processors – divide blocks into groups of

about equal number of grid points for each processor
• Master-worker execution model for MPI level, then parallelize 3D loops

for each block with OpenMP
• Many loops, so need to be careful about affinity of data objects to

processors across loops

• Hard to balance MPI workers vs. OpenMP threads per block – tradeoff
minimizing load imbalance vs. communication and synchronization cost

• Seems to work best on DSMs, but can be done well on distributed
memory systems

• No performance results!

CMSC 714 - Alan Sussman 9

CRETIN
• Physics application with multiple levels of message

passing and thread parallelism

• Ported onto both distributed memory system

(1464 4-processor nodes) and DSM (large SGI

Origin 2000)

• Complex structure, with 2 parts discussed

• Atomic kinetics – multiple zones with lots of

computation per zone – maps to either MPI or OpenMP

• Load balancing across zones is the problem – requires complex

dynamic algorithm that benefits both versions

• Radiation transport – mesh/grid sweep across multiple

zones, suitable for both MPI and OpenMP

• Two MPI options to parallelize, which one works best depends on

problem size – one needs a transpose operation for the MPI

version

• No performance results
CMSC 714 - Alan Sussman 10

OpenACC

CMSC 714 - Alan Sussman 11

Overview

• Like OpenMP, a set of directives to specify code and
data to offload to an accelerator (typically a GPU)

• for Fortran, C, C++
• Compiler then does a lot of the grunt work to run

code on the accelerator with help from the host
• initialize the device and its runtime environment
• allocate data on the device
• move data from host memory to device memory, or

initialize it on device memory
• launch one or more computational kernels on the device
• gather results from device memory back to host memory
• deallocate data on device

CMSC 714 - Alan Sussman 12

Programming model

• What to parallelize
• an outer fully parallel loop (or loop nest, over a multi-

dimensional domain), called gangs in OpenACC
• no synchronization between threads in different gangs

• and an inner synchronous (SIMD/vector) loop level (also
can be multi-dimensional, so a loop nest)

• explicit synchronization supported at this level

• On an NVIDIA GPU, each gang maps to one
streaming multiprocessor (as for a CUDA thread
block)

• and the inner loops map to threads within a gang
executed as a group on the cores in one streaming
multiprocessor

CMSC 714 - Alan Sussman 13

OpenACC Constructs/Directives
• Data construct

• defines a code region where data (arrays, subarrays, scalars)
should be allocated on the device

• with clauses to decide whether data is copied to/from host
memory or just allocated on device

• similar directives to have such info scoped across function
calls, and to synchronize with the host while executing on the
device

• Kernels construct
• specifies a code region to be compiled into one or more

accelerator kernels, executed in sequence
• can take data clauses to also specify the data to allocate on

the device for the kernels
• loop construct inside a kernels construct says what type of

parallelism to use to execute a loop (i.e. gangs/vectors)

CMSC 714 - Alan Sussman 14

OpenACC Constructs (cont.)

• Parallel construct
• For more explicit user-specified parallelism
• immediately starts the requested number of gangs, with

the specified number of worker threads
• then, like OpenMP parallel construct, all workers (as set of

threads) in a gang execute the code in the parallel construct, until
they reach a loop construct, where each worker then executes a
subset of the loop iterations

• kernels construct gives compiler (or programmer) more
flexibility in scheduling loops and decomposing iterations
across gangs/workers

CMSC 714 - Alan Sussman 15

Summary

• For more info on OpenACC, see www.openacc.org
• Current version is 2.6, from November 2017
• Compilers available from PGI (now part of NVIDIA),

Cray, CAPS (Exxact Corp.)

CMSC 714 - Alan Sussman 16

http://www.openacc.org

