CMSC 714
Lecture 6
MPI vs. OpenMP
and OpenACC

Alan Sussman



Notes

* MPI project due Friday, 6PM
* Questions on project?

* OpenMP project posted after MPI project due date

* More readings posted
* Don’t forget to send questions if you are assigned

CMSC 714 - Alan Sussman



OpenMP + MPI

* Some applications can take advantage of both
message passing and threads

e Questions is what to do to obtain best overall
performance, without too much programming difficulty

* Choices are all MPI, all OpenMP, or both

* For both, common option is outer loop parallelized with message
passing, inner loop with directives to generate threads

* Applications studied:
* Hydrology — CGWAVE
* Computational chemistry — GAMESS

* Linear algebra — matrix multiplication and QR
factorization

* Seismic processing — SPECseis95
e Computational fluid dynamics — TLNS3D
* Computational physics - CRETIN

CMSC 714 - Alan Sussman



Types of parallelism in the codes

* For message passing parallelism (MPI)
* Parametric — coarse-grained outer loop, essentially task parallel

* Structured domains — domain decomposition with local
operations — structured and unstructured grids

* Direct solvers — linear algebra, lots of communication and load
balancing required — message passing works well for large
systems of equations

* Shared memory parallelism (OpenMP)

e Statically scheduled parallel loops — one large, or several
smaller loops, non-nested parallel

 Parallel regions — merge loops into one parallel region to
reduce overhead of directives

* Dynamic load balanced — when static scheduling leads to load
imbalance from irregular task sizes

CMSC 714 - Alan Sussman 4



CGWAVE

* Finite elements - MPIl parameter space evaluation at outer loop,
OpenMP sparse linear equation solver in inner loops

* Speedup using 2 levels of parallelism allows modeling larger bodies of
water in a reasonable amount of time

* Master-worker strategy for dynamic load balancing in MPI
part/component

 Solver for each component solves large sparse linear system with
OpenMP to parallelize

* On SGI Origin 2000 (distributed shared memory machine), use first touch
rule to migrate data for each component to the processor that uses it

* Performance results show that best performance obtained using both
MPI and OpenMP, with a combination of MPIl workers and OpenMP
threads that depends on the problem/grid size

* And for load balancing, a lot fewer MPIl workers than components

CMSC 714 - Alan Sussman 5



GAMESS

* Computational chemistry — molecular dynamics —
MPI across cluster, OpenMP within each node

* Built on top of Global Arrays package — for
distributed array operations
* Which in turn uses MPI (paper says PVM) and OpenMP

e Linear algebra solvers mainly use OpenMP for
dynamic scheduling and load balancing

* MIP| versions of parts of code are complex, but can
provide higher performance for large problems

* Performance results on “medium” sized problem
from SPEC (Standard Performance Evaluation
Corp.) are for a small system (4 8-processor Alpha
machines) connected by Memory Channel

CMSC 714 - Alan Sussman



Linear algebra

* Hybrid parallelism with MPI for scalability and OpenMP
for load balancing, for MM and QR factorization

* On IBM SP system with multiple 4-processor nodes

e Studies tradeoffs of hybrid approach for linear algebra
algorithms vs. only using MPI (running 4 MPI processes
per node)

* Use OpenMP for load balancing and decreasing
communication costs within a node

* Also helps to hide communication latency behind other
operations — important for overall performance

* QR factorization results on “medium” sized matrices
show that adaptive load balancing is better than
dynamic loop scheduling within a node

CMSC 714 - Alan Sussman



SPECseis95

* For gas and oil exploration
e Uses FFTs and finite-difference solvers

* Original message passing version (in PVM) is SPMD,
OpenMP starts serial then starts an SPMD parallel
section

* In OpenMP version, shared data is only boundaries, everything
else local (like PVM version)

* OpenMP calls all in Fortran —no C OpenMP compiler — caused
difficulties for privatizing C global data, and thread issues
(binding to processors, OS calls)

* Code scales equally well for PVM and OpenMP, on SGI
Power Challenge (a DSM machine)

* This is a weak argument, because of likely poor PVM message
passing performance (in general, and especially on DSM
systems

CMSC 714 - Alan Sussman



TLNS3D

* CFD in Fortran77, uses MPI across grids and OpenMP to parallelize each
grid

* Multiple, non-overlapping grids/blocks that exchange data at
boundaries periodically

* Static block assignment to processors — divide blocks into groups of
about equal number of grid points for each processor

* Master-worker execution model for MPI level, then parallelize 3D loops
for each block with OpenMP

* Many loops, so need to be careful about affinity of data objects to
processors across loops

* Hard to balance MPI workers vs. OpenMP threads per block — tradeoff
minimizing load imbalance vs. communication and synchronization cost

* Seems to work best on DSMs, but can be done well on distributed
memory systems

* No performance results!

CMSC 714 - Alan Sussman



CRETIN

* Physics application with multiple levels of message
passing and thread parallelism

* Ported onto both distributed memory system
(1464 4-processor nodes) and DSM (large SGI
Origin 2000)

* Complex structure, with 2 parts discussed

* Atomic kinetics — multiple zones with lots of
computation per zone — maps to either MPIl or OpenMP

* Load balancing across zones is the problem — requires complex
dynamic algorithm that benefits both versions

 Radiation transport — mesh/grid sweep across multiple
zones, suitable for both MPIl and OpenMP

* Two MPI options to parallelize, which one works best depends on
problem size — one needs a transpose operation for the MPI
version

* No performance results

CMSC 714 - Alan Sussman 10



OpenACC



Overview

* Like OpenMP, a set of directives to specify code and
data to offload to an accelerator (typically a GPU)
e for Fortran, C, C++

* Compiler then does a lot of the grunt work to run
code on the accelerator with help from the host
* initialize the device and its runtime environment
e allocate data on the device

* move data from host memory to device memory, or
initialize it on device memory

* launch one or more computational kernels on the device
e gather results from device memory back to host memory
* deallocate data on device

CMSC 714 - Alan Sussman

12



Programming model

* What to parallelize

e an outer fully parallel loop (or loop nest, over a multi-
dimensional domain), called gangs in OpenACC
* no synchronization between threads in different gangs

* and an inner synchronous (SIMD/vector) loop level (also
can be multi-dimensional, so a loop nest)

 explicit synchronization supported at this level

*On an NVIDIA GPU, each gang maps to one
streaming multiprocessor (as for a CUDA thread
block)

* and the inner loops map to threads within a gang
executed as a group on the cores in one streaming
multiprocessor

CMSC 714 - Alan Sussman

13



OpenACC Constructs/Directives

* Data construct

 defines a code region where data (arrays, subarrays, scalars)
should be allocated on the device

 with clauses to decide whether data is copied to/from host
memory or just allocated on device

* similar directives to have such info scoped across function
calls, and to synchronize with the host while executing on the
device

e Kernels construct

* specifies a code region to be compiled into one or more
accelerator kernels, executed in sequence

 can take data clauses to also specify the data to allocate on
the device for the kernels

* loop construct inside a kernels construct says what type of
parallelism to use to execute a loop (i.e. gangs/vectors)



OpenACC Constructs (cont.)

* Parallel construct
* For more explicit user-specified parallelism

* immediately starts the requested number of gangs, with
the specified number of worker threads

* then, like OpenMP parallel construct, all workers (as set of
threads) in a gang execute the code in the parallel construct, until
they reach a loop construct, where each worker then executes a
subset of the loop iterations

 kernels construct gives compiler (or programmer) more

flexibility in scheduling loops and decomposing iterations
across gangs/workers



Summary

* For more info on OpenACC, see www.openacc.org

e Current version is 2.6, from November 2017

e Compilers available from PGI (now part of NVIDIA),
Cray, CAPS (Exxact Corp.)

CMSC 714 - Alan Sussman

16


http://www.openacc.org

