
CMSC 714
Lecture 14

Cloud Computing –
Spark and Mesos

Alan Sussman

Notes
• OpenMP project grades and reports out today or

tomorrow
• Feedback on research project proposals in next day

or 2
• Exam coming up on November 13

• sample exam questions posted soon

CMSC 714 - Alan Sussman 2

Spark
• Single engine for distributed data processing

• SQL
• stream processing
• machine learning
• graph processing

• Basic idea is to enable composing different types of
processing into a single application

• without copying data, so reuse of data and doing operations
in memory is fundamental

• Key abstraction is Resilient Distributed Dataset (RDD)
• a fault tolerant collection of objects (data items) partitioned

across a cluster that can be operated on in parallel
• Functional programming API in Scala, Java, Python, and

R
CMSC 714 - Alan Sussman 3

Spark (cont.)
• Users/developers write local functions that operate on

RDDs
• RDDs evaluated by Spark runtime lazily

• that means when they are needed, so only when one needs to
be instantiated

• enables creating an execution plan for a whole set of data
transformations (like in an RDBMS)

• User can enable sharing an RDD by making it persistent
in memory (spilled to disk if too big)

• this is a big difference from MapReduce implementations
• Fault tolerance – RDDs can be recomputed if lost by

keeping track of lineage (how they were computed)
• Can use different external systems for persistent

storage
• e.g., HDFS, S3, Cassandra

CMSC 714 - Alan Sussman 4

Spark (cont.)
• Additional functionality comes from building libraries

on top of basic abstractions
• SparkSQL for relational queries – but no transactions
• DataFrames – RDDs of records with a known schema, used for

tables in R and Python
• Spark Streaming for incremental stream processing on

discretized streams – split input data into small batches (e.g.,
data that arrives over 200ms) that is combined with state
stored in RDDs to produce new results

• GraphX – graph computation interface – vertex based
computations for graphs, and graphs partitioned across nodes

• Mllib – machine learning library
• Claim is that performance is comparable to specialized

systems for each kind of processing
• Last note is that they do admit that synchronization in

Spark means it does not work well for latency sensitive
computations

CMSC 714 - Alan Sussman 5

Mesos
• A meta-scheduler – to enable multiple cluster

computing frameworks (e.g., Hadoop, OpenMPI) to
share cluster resources

• an alternative to a centralized scheduler

• Basic idea is that the resources register with Mesos,
Mesos offers resources to frameworks, frameworks
decide whether to accept or reject the resource offers

• so frameworks do their own scheduling, once they obtain
resources from Mesos

• One catch is that someone has to tell Mesos how to
decide which resources to offer to which frameworks

• this is a policy decision (e.g., fair sharing), and there is a
Mesos plugin interface for the policy module

• similar to how HPC cluster schedulers work – Torque, SLURM

CMSC 714 - Alan Sussman 6

Mesos (cont.)
• Basic architecture is one Mesos master that frameworks

communicate with, and a Mesos slave daemon on each
cluster node

• each slave process offers resources through its daemon
• master offers resources to frameworks, which they can accept

or reject
• frameworks decide which offered resources to use – through a

scheduler they register with the master
• framework can then launch tasks on acquired resources

through their executor process
• Use Zookeeper for fault tolerance

• a distributed coordination service, to deal with faults in the
Mesos master – enables having hot spare copies of the master
– leader election

• use soft state so new master can reconstruct internal state
from slave daemons and framework schedulers

CMSC 714 - Alan Sussman 7

Mesos (cont.)
• Efficiency and robustness

• Framework can set filters, to tell master which offers it will
always reject – so master won't even try such offers

• To give incentive for frameworks to respond quickly to offers,
Mesos counts outstanding resource offers toward a
framework’s allocation of a cluster – so they don't hang onto
resources they may not use

• If a framework does not respond for a while, Mesos rescinds a
resource offer

• Performance
• simulation study shows Mesos provides both good latency to

schedulers that need resources, and good cluster utilization,
compared to a centralized scheduler

• Performance best for frameworks that have short tasks to run,
and jobs that can scale elastically – so probably not so good for
HPC workloads

CMSC 714 - Alan Sussman 8

