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Notes
• OpenMP project scores posted 

• Ask Swati if you have questions about grading
• Research project questions?
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Lamport Clocks
• Distributed systems are inherently concurrent, 

asynchronous, and nondeterministic, so executing 
programs on multiple machines requires 
coordination

• Lamport introduce methods to define an ordering 
of events

• Want to create a partial ordering of events 
(instructions, message passing, or whatever)

• Define a happens before relation: a → b
• event a happened before event b
• event a can causally affect event b
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Happens Before Relation

1. If a and b are events in the same process, and a 
comes before b, then a → b

2. If a is sending of a message by one process and b 
is the receipt of the same message by another 
process, then a → b

3. If a → b and b → c then a → c (transitivity)

• Partial Order: Unordered events are concurrent
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Logical Clocks
• Clock Condition: For any events a, b: if a → b then 

C<a>  <  C<b>
• Holds if C1 and C2 are satisfied:

• C1. If a and b are events in Process Pi, and a comes before b, 
then Ci<a>  <  Ci<b>

• C2. If a is the sending of a message by process Pi and b is the 
receipt of that message by process Pj, then Ci<a>  <  Cj<b>

• Implementation
• IR1. Each process Pi increments Ci between any two successive 

events
• IR2a. If event a is the sending of a message m by Process Pi, 

then the message m contains a timestamp Tm = Ci<a>.
• IR2b. Upon receiving a message m, process Pj sets Cj greater 

than or equal to its present value and greater than Tm.
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Total Ordering
• Partial ordering not always enough

• Prioritize processes Pi ≺ Pj

• Total ordering a ⇒ b :

If a is in Pi and b is in Pj, then a ⇒ b iff
• Ci<a>  <  Cj<b>
• Ci<a>  =  Cj<b> and Pi ≺ Pj
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Logical Clocks

• Issues with physical clocks (clock drift, etc.)
• For many purposes, it is sufficient to know the 

order in which events occurred
• BUT: Logical clocks cannot be used to order events 

outside the system
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Strong Clock Condition

• Approach does not take into account external 
events

• Define new set of events L

• Strong Clock Condition: For any events a, b in L:

if a ⇨ b then C<a>  <  C<b>

• Achieve strong clock condition with physical clocks
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Physical Clocks
• Run continuously

• PC1. Clocks must run at approximately the correct 
rate

• ∃k. k << 1 , |dCi(t)/dt-1| < k

• PC2. Clocks must be synchronized
• |Ci(t) - Cj(t)| < ε

• Minimum message delay µ
• Ci(t+ µ) – Cj(t) > 0

• Satisfying Strong Clock Condition:
• IR1: Each event occurs at a precise instant
• IR2:

• If Pi sends a message m at physical time t, then m contains a 
timestamp Tm = Ci(t).

• Upon receiving a message m at time t’, process Pj sets Cj(t’) equal 
to the maximum of Cj(t’) and (Tm + µm)
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Eraser
• What is the problem?

• Implementing multi-threaded programs is difficult and error 
prone

• Who cares?
• Developers (and users) of multi-threaded systems

• What is the approach?
• Provide tool support to automatically verify synchronization
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Eraser
• Dynamic data race detection tool
• Supports only lock-based synchronization
• Claim: Simpler, more efficient, and more thorough 

than approaches based on happens before
• Lock

• Synchronization object used for mutual exclusion
• Only the owner of a lock may release it (not like a 

semaphore) 
• Data Race

• More than 1 thread has read or write access to a variable 
without synchronization, and at least one is doing a write
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Other Approaches

• Monitors by Hoare
• Do not account for dynamically allocated data

• Static race detection
• Difficult analysis, if sound (does not produce false 

negatives) tends to produce many false positives
• Race detection based on Happens Before

• Inefficient since large amount of information is required
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Lockset Algorithm
• First version: Enforces simple locking discipline

• Each shared variable is protected by at least one lock

• Problem: Eraser doesn’t know which lock is for which 

variables

• Solution: Infer protection relation from execution 

history

• Set C(v) of candidate locks for each shared variable v

• Holds the locks that have protected a variable during 

execution

• Intuition:

• Every time a thread t accesses a shared variable v it must hold 

at least one lock l
• Algorithm:

• Initialize C(v) with all locks

• C(v) := C(v) ∩  locks_held(t)

• C(v) = {} à issue warning
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Improvements
• Relax locking discipline
• Initialization: Shared variables initialized w/o 

holding lock 
• Algorithm “pauses” until variable is accessed by a second 

thread
• Read-shared data: Variables written during init only 

and read-only thereafter
• No races are reported until a second thread writes to 

variable
• Read-write locks: Multiple readers can access a 

shared variable but only one writer at a time. 
• Keep track separately of write locks
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States of Memory Locations

• Virgin:
• New data, not referenced

• Exclusive
• Accessed by one thread

• Shared
• One write and multiple read 

accesses 

• Shared-Modified
• Multiple write accesses
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Implementation

• Developed for DIGITAL Unix OS
• now known as Tru64 UNIX (by HP)

• Input: Unmodified program binary

• Output: Instrumented binary that is functionally 
identical but includes calls to Eraser

• Race report:
• file + line
• list of stack frames
• thread ID, memory address, type of access
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Maintaining and Representing Lock Sets
• To maintain C(v)

• Instrumented each call to storage allocator to init C(v) for 
dynamically allocated data 

• Instrument each load/store instruction
• To maintain lock_held(t)

• Instrument each lock acquire/release (+ initialize/finalize)
• Each 32-bit word on heap or global data is possible 

shared variable
• List of lock sets for each memory location inefficient

• Use hash tables to avoid duplicate lock sets
• Shared variables represented by Shadow Words

• 30 bits for lockset index (or thread ID in exclusive state)
• 2 bits for state condition
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Evaluation

• Effectiveness
• Eraser more efficient than manual validation

• Sensitivity
• Not sensitive to the number of threads

• Extension to detecting deadlocks possible
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Problems

• Slows down program by a factor of 10 to 30

• Removing false positives might be time consuming
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Current Status
• Helgrind implements the Lockset algorithm (current 

web page says it implements happens before)
• http://valgrind.org/docs/manual/hg-manual.html 

• CheckSync implements Eraser for Java
• For a CMSC433 class in 2004, web page no longer active

• Microsoft was working on RaceTrack
• https://www.microsoft.com/en-

us/research/publication/racetrack-efficient-detection-of-data-
race-conditions-via-adaptive-tracking/

• Intel Inspector – not clear what algorithm is used
• https://software.intel.com/en-us/articles/use-intel-parallel-

inspector-to-find-race-conditions-in-openmp-based-
multithreaded-code
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