
CMSC 714
Lecture 15

Lamport Clocks and Eraser

Alan Sussman
(with thanks to Chris Ackermann)

Notes
• OpenMP project scores posted

• Ask Swati if you have questions about grading
• Research project questions?

CMSC 714 - Alan Sussman 2

Lamport Clocks
• Distributed systems are inherently concurrent,

asynchronous, and nondeterministic, so executing
programs on multiple machines requires
coordination

• Lamport introduce methods to define an ordering
of events

• Want to create a partial ordering of events
(instructions, message passing, or whatever)

• Define a happens before relation: a → b
• event a happened before event b
• event a can causally affect event b

CMSC 714 - Alan Sussman 3

Happens Before Relation

1. If a and b are events in the same process, and a
comes before b, then a → b

2. If a is sending of a message by one process and b
is the receipt of the same message by another
process, then a → b

3. If a → b and b → c then a → c (transitivity)

• Partial Order: Unordered events are concurrent

CMSC 714 - Alan Sussman 4

Logical Clocks
• Clock Condition: For any events a, b: if a → b then

C<a> < C
• Holds if C1 and C2 are satisfied:

• C1. If a and b are events in Process Pi, and a comes before b,
then Ci<a> < Ci

• C2. If a is the sending of a message by process Pi and b is the
receipt of that message by process Pj, then Ci<a> < Cj

• Implementation
• IR1. Each process Pi increments Ci between any two successive

events
• IR2a. If event a is the sending of a message m by Process Pi,

then the message m contains a timestamp Tm = Ci<a>.
• IR2b. Upon receiving a message m, process Pj sets Cj greater

than or equal to its present value and greater than Tm.

CMSC 714 - Alan Sussman 5

Total Ordering
• Partial ordering not always enough

• Prioritize processes Pi ≺ Pj

• Total ordering a ⇒ b :

If a is in Pi and b is in Pj, then a ⇒ b iff
• Ci<a> < Cj
• Ci<a> = Cj and Pi ≺ Pj

CMSC 714 - Alan Sussman 6

Logical Clocks

• Issues with physical clocks (clock drift, etc.)
• For many purposes, it is sufficient to know the

order in which events occurred
• BUT: Logical clocks cannot be used to order events

outside the system

CMSC 714 - Alan Sussman 7

Strong Clock Condition

• Approach does not take into account external
events

• Define new set of events L

• Strong Clock Condition: For any events a, b in L:

if a ⇨ b then C<a> < C

• Achieve strong clock condition with physical clocks

CMSC 714 - Alan Sussman 8

Physical Clocks
• Run continuously

• PC1. Clocks must run at approximately the correct
rate

• ∃k. k << 1 , |dCi(t)/dt-1| < k

• PC2. Clocks must be synchronized
• |Ci(t) - Cj(t)| < ε

• Minimum message delay µ
• Ci(t+ µ) – Cj(t) > 0

• Satisfying Strong Clock Condition:
• IR1: Each event occurs at a precise instant
• IR2:

• If Pi sends a message m at physical time t, then m contains a
timestamp Tm = Ci(t).

• Upon receiving a message m at time t’, process Pj sets Cj(t’) equal
to the maximum of Cj(t’) and (Tm + µm)

CMSC 714 - Alan Sussman 9

Eraser
• What is the problem?

• Implementing multi-threaded programs is difficult and error
prone

• Who cares?
• Developers (and users) of multi-threaded systems

• What is the approach?
• Provide tool support to automatically verify synchronization

CMSC 714 - Alan Sussman 10

Eraser
• Dynamic data race detection tool
• Supports only lock-based synchronization
• Claim: Simpler, more efficient, and more thorough

than approaches based on happens before
• Lock

• Synchronization object used for mutual exclusion
• Only the owner of a lock may release it (not like a

semaphore)
• Data Race

• More than 1 thread has read or write access to a variable
without synchronization, and at least one is doing a write

CMSC 714 - Alan Sussman 11

Other Approaches

• Monitors by Hoare
• Do not account for dynamically allocated data

• Static race detection
• Difficult analysis, if sound (does not produce false

negatives) tends to produce many false positives
• Race detection based on Happens Before

• Inefficient since large amount of information is required

CMSC 714 - Alan Sussman 12

Lockset Algorithm
• First version: Enforces simple locking discipline

• Each shared variable is protected by at least one lock

• Problem: Eraser doesn’t know which lock is for which

variables

• Solution: Infer protection relation from execution

history

• Set C(v) of candidate locks for each shared variable v

• Holds the locks that have protected a variable during

execution

• Intuition:

• Every time a thread t accesses a shared variable v it must hold

at least one lock l
• Algorithm:

• Initialize C(v) with all locks

• C(v) := C(v) ∩ locks_held(t)

• C(v) = {} à issue warning

CMSC 714 - Alan Sussman 13

Improvements
• Relax locking discipline
• Initialization: Shared variables initialized w/o

holding lock
• Algorithm “pauses” until variable is accessed by a second

thread
• Read-shared data: Variables written during init only

and read-only thereafter
• No races are reported until a second thread writes to

variable
• Read-write locks: Multiple readers can access a

shared variable but only one writer at a time.
• Keep track separately of write locks

CMSC 714 - Alan Sussman 14

States of Memory Locations

• Virgin:
• New data, not referenced

• Exclusive
• Accessed by one thread

• Shared
• One write and multiple read

accesses

• Shared-Modified
• Multiple write accesses

CMSC 714 - Alan Sussman

Virgin
Shared-
ModifiedSharedExclusive

15

Implementation

• Developed for DIGITAL Unix OS
• now known as Tru64 UNIX (by HP)

• Input: Unmodified program binary

• Output: Instrumented binary that is functionally
identical but includes calls to Eraser

• Race report:
• file + line
• list of stack frames
• thread ID, memory address, type of access

CMSC 714 - Alan Sussman 16

Maintaining and Representing Lock Sets
• To maintain C(v)

• Instrumented each call to storage allocator to init C(v) for
dynamically allocated data

• Instrument each load/store instruction
• To maintain lock_held(t)

• Instrument each lock acquire/release (+ initialize/finalize)
• Each 32-bit word on heap or global data is possible

shared variable
• List of lock sets for each memory location inefficient

• Use hash tables to avoid duplicate lock sets
• Shared variables represented by Shadow Words

• 30 bits for lockset index (or thread ID in exclusive state)
• 2 bits for state condition

CMSC 714 - Alan Sussman 17

Evaluation

• Effectiveness
• Eraser more efficient than manual validation

• Sensitivity
• Not sensitive to the number of threads

• Extension to detecting deadlocks possible

CMSC 714 - Alan Sussman 18

Problems

• Slows down program by a factor of 10 to 30

• Removing false positives might be time consuming

CMSC 714 - Alan Sussman 19

Current Status
• Helgrind implements the Lockset algorithm (current

web page says it implements happens before)
• http://valgrind.org/docs/manual/hg-manual.html

• CheckSync implements Eraser for Java
• For a CMSC433 class in 2004, web page no longer active

• Microsoft was working on RaceTrack
• https://www.microsoft.com/en-

us/research/publication/racetrack-efficient-detection-of-data-
race-conditions-via-adaptive-tracking/

• Intel Inspector – not clear what algorithm is used
• https://software.intel.com/en-us/articles/use-intel-parallel-

inspector-to-find-race-conditions-in-openmp-based-
multithreaded-code

CMSC 714 - Alan Sussman 20

http://valgrind.org/docs/manual/hg-manual.html
https://www.microsoft.com/en-us/research/publication/racetrack-efficient-detection-of-data-race-conditions-via-adaptive-tracking/
https://software.intel.com/en-us/articles/use-intel-parallel-inspector-to-find-race-conditions-in-openmp-based-multithreaded-code

