
CMSC 714
Lecture 17

Cache Tools

Alan Sussman



Notes
•Midterm exam in 2 weeks, on Tuesday, Nov. 13
• on readings through previous week

•Group Project interim report due Nov. 9
•Seminar Thursday at 1PM (just before class) on 

UPC++, in AVW 3165

2



Data and Computation Reordering
•Goal is to improve performance of irregular 

applications
• ones with data access patterns not known until runtime
• includes solving PDEs on unstructured or adaptive grids, n-

body problems, etc.
• in this paper, model the access pattern with an interaction list

that specifies the data elements to access
• Runtime methods to do the same types of 

optimizations as are done for regular applications
• ones where data access patterns (often to multi-dimensional 

arrays) are known at compile-time
• e.g., loop blocking, interchange, data prefetching

•Methods to reorder data dynamically to improve 
memory hierarchy behavior
• improve spatial locality

•Methods to reorder loop iterations
• typically to improve spatial and temporal locality

3



Data and Computation Reordering
• Data reordering – reorder the data elements pointed to by 

the interaction list (since order really doesn’t matter for 
getting the right answers) – to improve spatial locality
• first touch method

• first do a linear scan to determine order elements are accessed, then sort in 
that order, updating the interaction list to point to the relocated elements

• space filling curve method
• use element coordinate information to build a space filling curve that goes 

through all the elements, which preserves locality in multiple dimensions
• sort elements according to position on the curve

• Computation reordering – reorder loop iterations, but don’t 
change the locations of the data elements – to improve 
both spatial and temporal locality
• space filling curve method

• use positions of data elements as coordinates for the space filling curve
• blocking method

• recursive divide and conquer method to group elements – partition the 
overall coordinate space, and process elements one partition at a time

• Overall experimental results on 3 applications/kernels show 
that need to do both computation and data reordering to 
get best results, and should use space filling curves for both

4



MemSpy
• A tool for finding memory performance bottlenecks in serial 

and parallel programs
• provides detailed view of cache misses
• and both code- and data-centric views of the causes for cache 

misses
• Goals are to
• separately report processor and memory time, to find memory 

bottlenecks
• link bottlenecks back to data objects, not just code segments
• provide memory stats detailed enough to enable programmer to fix 

bottlenecks
• why did the cache misses occur?

• High overhead solution
• use simulation to track cache behavior (no hardware support 

required)
• uses Tango simulation/tracing system

• instrument application via pre-processing, then trace every memory 
reference with a call to the memory simulator, which then calls MemSpy to 
compute aggregate statistics on cache events (hits, misses, replacements, 
etc.)

5



MemSpy
• Presents code and data oriented statistics
• code and data divided into logical units – code segments and data 

bins – group statistics into each bin
• code segment is a function/procedure – just need to trace function 

entry/exit
• data bin can be a single object, or a group of objects

• a bin is all memory ranges allocated at same point in source code with 
identical call paths (same stack)

• Data oriented statistics divided into 3 categories
• compulsory misses (first use)
• replacements (capacity misses, conflict misses)
• invalidations (from cache coherence misses in an SMP)

• Code examples show the utility of data centric view, and 
breaking down misses into categories
• Performance of instrumented code is very poor, but claim is 

that it could be improved (never done?)
• real problem is that multiprocessor execution is simulated by Tango 

via interleaving processes on a single processor, so does not scale
• conclusion is that need hardware trace facility on a multiprocessor

6


