
CMSC 714
Lecture 17
Autotuning

Alan Sussman

Notes
• Midterm exam in 1 week, on Tuesday, Nov. 13

• on readings through this week
• Group Project interim report due Thursday

2CMSC 714, Fall 2018 - Alan Sussman

Autotuning for HPC Applications
• Overall goal is performance portability

• Across diverse HPC architectures
• Which has not been achievable through languages and

compilers
• Involves “automatic generation of a search space of

possible implementations of a computation that are
evaluated through models and/or empirical
measurement to identify the most desirable
implementation”

• Search space is a set of code variants functionally
equivalent

• Paper says to an original implementation, but could be to
a specification (e.g., an API)

3CMSC 714, Fall 2018 - Alan Sussman

Autotuning
• Empirical autotuners

• Execute each code variant
• Measure runtime (or another objective function)
• Evaluate performance of each variant
• Run the best performing variant
• Need intelligent search methods and models to prune a

potentially very large search space
• Can also use runtime prediction models, esp. for long-running

kernels
• Code variants

• Different code organization, data structures, algorithms, low-
level implementation details

• Parallelization strategies
• Memory hierarchy optimization (data placement,

blocking/tiling, tile size)
• Can be applied offline, or online while the application is

running, or even incrementally

4CMSC 714, Fall 2018 - Alan Sussman

Tools
• Libraries

• Isolate performance critical functions behind a standard API

• Examples include Atlas (linear algebra), SPIRAL (digital signal

processing), Sparsity (sparse matrix computations), FFTW (fast

Fourier transforms)

• Compilers and code generators

• Generate a collection of architecture-specific codes from same

high-level input

• Examples include CHiLL (USC, Utah, UMD), Orio (Oregon, Ohio

State), POET (Georgia Tech, LLNL)

• Can include parallelization – SIMD pragmas, OpenMP

directives, CUDA, etc.

• And various loop optimizations – tiling, unrolling, permutation,

fusion, distribution, prefetching, software pipelining, …

• And what order to apply them

5CMSC 714, Fall 2018 - Alan Sussman

Application-level tools
• Tools allow expressing tunable parameters and code

variants representing alternate implementations
• Can select code variant based on problem size, to target

different levels of memory hierarchy or parallelism
• Must be done at runtime if depends on input dataset

• Active Harmony (UMD) and Adapt (Purdue) can create, link, test new
variants in parallel with execution during iterative computations

• Disadvantage is that each application developer has to
specify autotuning

• New frameworks like RAJA (LLNL) and Kokkos (SNL) can
specialize high level code using C++ template
abstractions around loops and data structures

• Also domain specific languages (DSLs) for some
application areas – e.g., Halide for image processing,
others for stencil computations (PDEs)

6CMSC 714, Fall 2018 - Alan Sussman

Search
• Evaluate points in the search space (parameter

values, code variants) to find optimal solution
• Complete enumeration

• Doesn’t scale since there can be too many points in the
search space

• Two ways to limit search space to a subset
• Model-free – global or local search

• Global includes simulated annealing, genetic algorithms, particle
swarm optimization – guaranteed to find global optimum if given
long enough search time, but in practice stop earlier

• Local includes Nelder-Mead simplex, orthogonal search, variable
neighborhood search – move from current to nearby point in
search space, so can terminate in a local optimum

• Model-based
• Use performance prediction metrics (analytical or empirical

models)
• Limited by accuracy of models

7CMSC 714, Fall 2018 - Alan Sussman

Software Engineering Challenges
• Offline autotuning makes compilation slow

• Many variants need to be compiled and executed
• Empirical autotuning makes developer manage the

tuning process
• Build process for autotuning can be complex

• Can be different while autotuning vs. running autotuned
code (library, application, etc.)

• Package management systems (e.g., Spack) help
• Can wrap compilers to generate autotuning variants

• Debugging autotuned code can be difficult
• You may be running automatically generated code!
• But the generated code is more likely than yours to be

correct …

8CMSC 714, Fall 2018 - Alan Sussman

ATLAS
• Automatically Tuned Linear Algebra Software

• Library produced by autotuning – they call it automated
empirical optimization of software (AEOS)

• Start from well-know, widely used API for linear algebra
core operations

• BLAS – basic linear algebra subroutines
• For linear algebra, need to characterize parameters that vary

across machines – biggest one is blocking factor for blocked LA
algorithms, which affects cache utilization

• Can also try different source code implementations
• Multiple implementations or code generation

• To produce highly tuned code, not enough to
understand the hardware

• Because of complex interactions between hardware features,
compiler, OS, …

• So we’re back to an empirical process – try code variants,
parameter values, etc. to find the best implementation on a
specific machine

9CMSC 714, Fall 2018 - Alan Sussman

ATLAS
• Goal is portable, efficient implementation of BLAS

• BLAS are building blocks for performing vector and matrix
operations

• Level 1 is vector-vector

• Level 2 is matrix-vector
• Level 3 is matrix-matrix

• Level 1 has no possible memory reuse, so not addressed
• Level 2 memory blocking allows for reuse of vector

operands, but not matrix
• Reduces movement of vector operands from O(N2) to O(N)
• Allows for modest speedups – 10-300%

• Level 3 blocking allows for reuse of both operands
• Blocking reduces O(N3) fetch costs to O(N2)
• Also better optimizes O(N3) computation costs than many

compilers (run on non-blocked code)
• Can give orders of magnitude performance improvements

10CMSC 714, Fall 2018 - Alan Sussman

ATLAS
• Level 3 BLAS mainly targets generalized matrix

multiplication (GEMM)
• ! ← #$% & $% ' +)! , $% + = + $- +T

• C is an MxN matrix, op(A) and op(B) are MxK and KxN
• Uses both parameterized adaptation and code

generation to adapt to a new machine
• To generate L1 cache-contained matrix multiply kernel

• Most of the paper goes into the details of how to
generate the MM kernel that fits into L1 cache

• All sorts of decisions need to be made about copying matrices,
which matrix is in the outermost loop, writing output to C or to
an output temporary matrix, choosing loop structure to help
with L2 cache reuse

• ATLAS determines size of L1 data cache, but not L2 (instead
computes a value that represents the amount usable for its
blocking)

11CMSC 714, Fall 2018 - Alan Sussman

ATLAS
• Other optimizations

• Instruction cache reuse – fit code into L1 instruction cache
• Floating point instruction ordering – to hide pipeline latencies (if no

fused multiply-add) – modern processors do out-of-order execution
in hardware, so this is not needed

• Reduce loop overhead by loop unrolling
• Expose instruction-level parallelism – for floating point computations

and for memory fetches
• Search heuristic uses a code generator coupled with a timer

routine
• Start with some initial good guesses, then try different loop unrolling

and latency hiding strategies to find the best performing variant and
parameter values

• Performance results show that ATLAS produces code that is
as good as vendor BLAS implementations and much better
than what a compiler can do

• For 500x500 matrices
• Paper also discusses Level 2 BLAS optimization process

• More complex in some ways than Level 3!

12CMSC 714, Fall 2018 - Alan Sussman

