CMSC 714
Lecture 17
Autotuning

Alan Sussman
Notes

• Midterm exam in 1 week, on Tuesday, Nov. 13
 • on readings through this week

• Group Project interim report due Thursday
Autotuning for HPC Applications

• Overall goal is *performance portability*
 • Across diverse HPC architectures
 • Which has not been achievable through languages and compilers

• Involves “automatic generation of a search space of possible implementations of a computation that are evaluated through models and/or empirical measurement to identify the most desirable implementation”

• Search space is a set of code variants functionally equivalent
 • Paper says to an original implementation, but could be to a specification (e.g., an API)
Autotuning

- **Empirical autotuners**
 - Execute each code variant
 - Measure runtime (or another objective function)
 - Evaluate performance of each variant
 - Run the best performing variant
 - Need intelligent search methods and models to prune a potentially very large search space
 - Can also use runtime prediction models, esp. for long-running kernels

- **Code variants**
 - Different code organization, data structures, algorithms, low-level implementation details
 - Parallelization strategies
 - Memory hierarchy optimization (data placement, blocking/tiling, tile size)

- **Can be applied offline, or online while the application is running, or even incrementally**
Tools

• Libraries
 • Isolate performance critical functions behind a standard API
 • Examples include Atlas (linear algebra), SPIRAL (digital signal processing), Sparsity (sparse matrix computations), FFTW (fast Fourier transforms)

• Compilers and code generators
 • Generate a collection of architecture-specific codes from same high-level input
 • Examples include CHiLL (USC, Utah, UMD), Orio (Oregon, Ohio State), POET (Georgia Tech, LLNL)
 • Can include parallelization – SIMD pragmas, OpenMP directives, CUDA, etc.
 • And various loop optimizations – tiling, unrolling, permutation, fusion, distribution, prefetching, software pipelining, ...
 • And what order to apply them
Application-level tools

• Tools allow expressing tunable parameters and code variants representing alternate implementations
 • Can select code variant based on problem size, to target different levels of memory hierarchy or parallelism
 • Must be done at runtime if depends on input dataset
 • Active Harmony (UMD) and Adapt (Purdue) can create, link, test new variants in parallel with execution during iterative computations
• Disadvantage is that each application developer has to specify autotuning
• New frameworks like RAJA (LLNL) and Kokkos (SNL) can specialize high level code using C++ template abstractions around loops and data structures
• Also domain specific languages (DSLs) for some application areas – e.g., Halide for image processing, others for stencil computations (PDEs)
Search

• Evaluate points in the search space (parameter values, code variants) to find optimal solution

• Complete enumeration
 • Doesn’t scale since there can be too many points in the search space

• Two ways to limit search space to a subset
 • Model-free – global or local search
 • Global includes simulated annealing, genetic algorithms, particle swarm optimization – guaranteed to find global optimum if given long enough search time, but in practice stop earlier
 • Local includes Nelder-Mead simplex, orthogonal search, variable neighborhood search – move from current to nearby point in search space, so can terminate in a local optimum
 • Model-based
 • Use performance prediction metrics (analytical or empirical models)
 • Limited by accuracy of models
Software Engineering Challenges

• Offline autotuning makes compilation slow
 • Many variants need to be compiled and executed
• Empirical autotuning makes developer manage the tuning process
• Build process for autotuning can be complex
 • Can be different while autotuning vs. running autotuned code (library, application, etc.)
• Package management systems (e.g., Spack) help
 • Can wrap compilers to generate autotuning variants
• Debugging autotuned code can be difficult
 • You may be running automatically generated code!
 • But the generated code is more likely than yours to be correct …
ATLAS

• Automatically Tuned Linear Algebra Software
 • Library produced by autotuning – they call it automated empirical optimization of software (AEOS)

• Start from well-know, widely used API for linear algebra core operations
 • BLAS – basic linear algebra subroutines
 • For linear algebra, need to characterize parameters that vary across machines – biggest one is blocking factor for blocked LA algorithms, which affects cache utilization
 • Can also try different source code implementations
 • Multiple implementations or code generation

• To produce highly tuned code, not enough to understand the hardware
 • Because of complex interactions between hardware features, compiler, OS, ...
 • So we’re back to an empirical process – try code variants, parameter values, etc. to find the best implementation on a specific machine
ATLAS

• Goal is portable, efficient implementation of BLAS
 • BLAS are building blocks for performing vector and matrix operations
 • Level 1 is vector-vector
 • Level 2 is matrix-vector
 • Level 3 is matrix-matrix
 • Level 1 has no possible memory reuse, so not addressed
 • Level 2 memory blocking allows for reuse of vector operands, but not matrix
 • Reduces movement of vector operands from $O(N^2)$ to $O(N)$
 • Allows for modest speedups – 10-300%
 • Level 3 blocking allows for reuse of both operands
 • Blocking reduces $O(N^3)$ fetch costs to $O(N^2)$
 • Also better optimizes $O(N^3)$ computation costs than many compilers (run on non-blocked code)
 • Can give orders of magnitude performance improvements
ATLAS

- Level 3 BLAS mainly targets generalized matrix multiplication (GEMM)
 - $C \leftarrow \alpha \text{op}(A)\text{op}(B) + \beta C, \text{op}(X) = X \text{ or } X^T$
 - C is an $M \times N$ matrix, $\text{op}(A)$ and $\text{op}(B)$ are $M \times K$ and $K \times N$

- Uses both parameterized adaptation and code generation to adapt to a new machine
 - To generate L1 cache-contained matrix multiply kernel

- Most of the paper goes into the details of how to generate the MM kernel that fits into L1 cache
 - All sorts of decisions need to be made about copying matrices, which matrix is in the outermost loop, writing output to C or to an output temporary matrix, choosing loop structure to help with L2 cache reuse
 - ATLAS determines size of L1 data cache, but not L2 (instead computes a value that represents the amount usable for its blocking)
ATLAS

• Other optimizations
 • Instruction cache reuse – fit code into L1 instruction cache
 • Floating point instruction ordering – to hide pipeline latencies (if no fused multiply-add) – modern processors do out-of-order execution in hardware, so this is not needed
 • Reduce loop overhead by loop unrolling
 • Expose instruction-level parallelism – for floating point computations and for memory fetches

• Search heuristic uses a code generator coupled with a timer routine
 • Start with some initial good guesses, then try different loop unrolling and latency hiding strategies to find the best performing variant and parameter values

• Performance results show that ATLAS produces code that is as good as vendor BLAS implementations and much better than what a compiler can do
 • For 500x500 matrices

• Paper also discusses Level 2 BLAS optimization process
 • More complex in some ways than Level 3!