
CMSC 714
Lecture 21

Batch Scheduling

Alan Sussman



Notes
• All readings posted, except last day
• Group Project presentations start Nov. 29

• Need groups to volunteer to go early
• Today, first any questions/comments on BOINC 

(and Condor)

CMSC 714, Fall 2018 - Alan Sussman 2



Backfilling on IBM SP2
• For space sharing on clusters, distributed memory 

parallel machines
• Default policy is FCFS in queuing system

• causes fragmentation, so can do better by allowing later 
jobs in queue to bypass first job that can’t run yet 
because not enough nodes currently available

• have to ensure not starving large jobs, and helps to be 
able to predict when a job will run

• works better if users give runtime estimate for their job, 
in addition to number of nodes desired

• used in EASY scheduler algorithm from Argonne
• EASY only allows jobs to move up in queue if don’t delay the first

queued job
• paper shows that can lead to unbounded delay if a job has 

unbounded execution time (doesn’t delay first job in queue, but 
can delay later jobs)

CMSC 714, Fall 2018 - Alan Sussman 3



Backfilling
• Conservative backfilling

• backfill, but don’t delay any previous job in queue
• scheduling decision can be made when job is submitted (later 

arriving jobs can’t affect the decision)
• no starvation of large jobs
• problem occurs when job terminates early

• best solution is to then compress schedule, instead of doing nothing, 
or redoing backfilling algorithm, which could cause a job to run later

• Evaluation with workload model derived from real 
system traces shows that conservative and EASY 
backfilling perform similarly (except at very high 
workloads), and same on real traces with user runtime 
estimates (or real execution times)

• Results also show that user runtime estimates are very 
inaccurate, but conservative algorithm works better 
than EASY in that case

CMSC 714, Fall 2018 - Alan Sussman 4



Symbiotic Space Sharing
• Idea is to go beyond space sharing, to allow multiple 

programs to share a node in a cluster/parallel machine, 
but avoid contention for node resources by mixing jobs 
with different resource requirements

• goal is to increase overall system throughput
• even more relevant now with multi-core nodes

• Even on space shared systems, there are shared 
resources

• network bandwidth
• file system (e.g., DataStar’s GPFS)

• Hard part is characterizing an application’s resource 
usage, and how it may interfere with other apps 
running on same node(s)

• Study divides resources into memory and I/O
• memory includes all cache levels
• I/O to both local file system and to GPFS

CMSC 714, Fall 2018 - Alan Sussman 5



Symbiotic Space Sharing
• Benchmarks used to stress different parts of 1-node system

• GUPS for random access to memory
• Stream for memory bandwidth, and cache effects
• EP for compute bound (baseline)
• results show slowdowns from sharing – pretty much linear in amount of 

sharing
• IOBench used for disk read/write tests, also shows slowdowns mostly 

linear, but much bigger than for memory benchmarks

• For parallel codes, thorough study of effects of different job 
mixes sort of shows that sharing across benchmarks that have 
different bottleneck resources works well

• compare NAS Parallel Benchmarks running against each other and 
against EP and IOBench

• by running on more/fewer nodes to decrease/increase contention (for 
same total number of processes)

• Last topic is identifying job characteristics so symbiotic scheduler 
can decide what to do

• either use past history of a job (with instrumentation), or maybe use 
hardware counters

• either way, need a database of past runs (or current run for a really long 
running job)

CMSC 714, Fall 2018 - Alan Sussman 6


