
CMSC 714
Lecture 22
Parallel I/O

Alan Sussman



Notes
• Group Project presentations start next Thursday 

and following Tuesday and Thursday
• final report due Tuesday, December 11

CMSC 714, Fall 2018 - Alan Sussman 2



IBM GPFS
• Designed to support high throughput parallel 

applications, including multimedia
• well suited for scientific computations
• still used in many of Top 500 supercomputers

• Main idea is to use parallel I/O to increase 
performance and scale to large configurations

• increase bandwidth by spreading reads and writes (even 
to a single file) across multiple disks, especially for 
sequential access

• avoid the “one file per parallel process” model, or 
sending all I/O through one node

• use internal high performance switch, plus separate I/O 
nodes, for I/O from parallel processes running on nodes

• files can be both striped across multiple I/O nodes, and 
across multiple disks in each I/O node

CMSC 714, Fall 2018 - Alan Sussman 3



IBM GPFS
• Each node runs a demon (mmfsd) to provide I/O services

• one demon runs a metanode service, to serve file metadata (ownership, 
permissions), and inode/directory updates

• one demon runs a stripe group manager, to keep track of available disks
• a token manager to synchronize concurrent access to files, maintain 

consistency across caches
• each application node demon mounts a file system and performs file 

accesses (through switch, to I/O nodes that have the disks with the data)
• Client-side caching

• inside Virtual Shared Disk (VSD) layer in kernel (server is on I/O nodes)
• pagepool in each application node’s memory
• read-ahead discovers sequential and constant stride access patterns
• write behind allows application to continue after data copied into 

pagepool – cost is extra copy to pagepool
• Experiments show that GPFS scales well to very high absolute 

performance for sequential accesses
• need big transfer sizes for non-sequential accesses to get decent 

performance – use MPI-IO to aggregate (collective I/O)
• 1 server can handle up to maybe 6 clients – this is technology dependent 

(switch, disks, processors)

CMSC 714, Fall 2018 - Alan Sussman 4



Active Disks

• Goal is to move the computation to the data, by 
offloading processing to disk resident processors

• Motivation is that even fast host processor will be 
unable to keep many disks busy if it’s doing any serious 
processing of the data

• you say MapReduce, but why not do MapReduce at the disk?
• in later work, just attach the right number of disks to a host 

(technology dependent), and do processing in host
• Stream-based programming model

• disklets that read from one or more input streams, write to one 
or more output streams

• disklets configured and controlled from host, and have limited 
capabilities, to protect again errors or malicious code

• read data into fixed sized buffers (chunk at a time)
• no dynamic memory allocation
• I/O ops initiated from host program

CMSC 714, Fall 2018 - Alan Sussman 5



Active Disks
• Applications include data warehousing, image 

processing, satellite data processing, …
• examples of how to write disklets given for all of those
• performance comparison against host only programs with 

conventional disks
• not completely fair, since the Active Disk implementations use 

processing power from multiple disk processors
• but each disk processor is less powerful

• simulation-based experiments, but fairly detailed, accurate 
simulations – used multiple datasets, quite large for the time, 
data striped in large chunks across disks (256KB)

• Experiments show that Active Disks scales well with 
more disks, performs better than conventional 
architecture when significant processing on data is 
required

• puts much less stress on network between disks and host than 
conventional architecture

• host can become a bottleneck when used for collecting and 
redistributing data from multiple disks

CMSC 714, Fall 2018 - Alan Sussman 6


