Utilization and Predictability in Scheduling
the IBM SP2 with Backfilling

Dror G. Feitelson Ahuva Mu’alem Weil

Institute of Computer Science
The Hebrew University of Jerusalem
91904 Jerusalem, Israel
{feit,ahumu} @cs.huji.ac.il

Abstract

Scheduling jobs on the IBM SP2 system is usually done by giving each job a par-
tition of the machine for its exclusive use. Allocating such partitions in the order that
the jobs arrive (FCFS scheduling) is fair and predictable, but suffers from severe frag-
mentation, leading to low utilization. This motivated Argonne National Lab, where
the first large SP1 was installed, to develop the EASY scheduler. This scheduler, which
has since been adopted by many other SP2 sites, uses aggressive backfilling: small jobs
are moved ahead to fill in holes in the schedule, provided they do not delay the first job
in the queue. We show that a more conservative approach, in which small jobs move
ahead only if they do not delay any job in the queue, produces essentially the same
benefits in terms of utilization. Qur conservative scheme has the added advantage that
queueing times can be predicted in advance, whereas in EASY the queueing time is
unbounded.

1 Introduction

The scheduling scheme used on most distributed-memory parallel supercomputers is variable
partitioning, meaning that each job receives a partition of the machine with its desired
number of processors [2]. Such partitions are allocated in a first-come first-serve (FCFS)
manner to interactive jobs that are submitted directly, and to batch jobs that are submitted
via a queueing system such as NQS. But this approach suffers from fragmentation, where
processors cannot meet the requirements of the next queued job and therefore remain idle.
As a result system utilization is typically in the range of 50-80% [12, 9, 4, 7].

It is well known that the best solutions for this problem are to use dynamic partitioning
[11] or gang scheduling [3]. However, these schemes have practical limitations. The only

efficient and widely used implementation of gang scheduling was the one on the CM-5 Con-
nection Machine; other implementations are too coarse-grained for real interactive support,
and do not enjoy much use. Dynamic partitioning has not been implemented on production
machines at all.

A simpler approach is to just re-order the jobs in the queue, that is, to use non-FCFS
policies [5]. Consider the following scenario, where a number of jobs are running side by
side, and the next queued job requires all the processors in the system. A FCFS scheduler
would then reserve all the processors that are freed for this queued job, and leave them
idle. A non-FCFS scheduler would schedule some other smaller jobs, that are behind the
big job in the queue, rather than letting the processors idle [8, 1]. Of course, this runs the
danger of starving the large job, as small jobs continue to pass it by. The typical solution
to this problem is to allow only a limited number of jobs to leapfrog a job that cannot be
serviced, and then start to reserve (and idle) the processors. The point at which the policies
are switched can be chosen so as to amortize the idleness over more useful computation, by
causing jobs that create significant idleness to wait more before making a reservation.

A somewhat more sophisticated policy is to require users to estimate the runtime of their
jobs. Using this information, only short jobs — that are expected to terminate in time —
are allowed to leapfrog a waiting large job. This approach, which is called backfilling, was
developed for the IBM SP1 parallel supercomputer installed at Argonne National Lab as part
of EASY (the Extensible Argonne Scheduling sYstem) [10], which has since been integrated
with the LoadLeveler scheduler from IBM for the SP2 [13].

The EASY backfilling algorithm only checks that jobs that move ahead in the queue
do not delay the first queued job. We show that this approach can lead to unbounded
queueing delays for other queued jobs, and therefore prevents the system from making definite
predictions as to when each job will run. We then go on to show that an alternative approach,
in which short jobs are moved ahead only if they do not delay any job in the queue, has
essentially the same benefits as the more aggressive EASY algorithm. As this approach has
the additional benefit of making an exact reservation for each job immediately when it is
submitted, it is preferable to the EASY algorithm. The comparison of the algorithms is done
both with a general workload model and with specific workload traces from SP2 installations.

2 Backfilling

Backfilling is an optimization in the framework of variable partitioning. In this framework,
users define the number of processors required for each job and also provide an estimate
of the runtime; thus jobs can be described as requiring a rectangle in processor/time space
(Fig. 1). The jobs then run on dedicated partitions of the requested size. Note that users
are motivated to provide an accurate estimate of the runtime, because lower estimates mean
that the job may be able to run sooner, but if the estimate is too low the job will be killed
when it overruns its allocation.

Once runtime estimates are available, it is possible to predict when jobs will terminate,

processors

runtime

Figure 1: Graphical representation of a job in processor/time space.

and thus when the next queued jobs will be able to run. With FCFS scheduling, queueing
time is estimated based on previous jobs in the queue. However, FCFS suffers from fragmen-
tation and delays to short jobs that are stuck behind long ones. Backfilling improves upon
this by moving short jobs ahead in the queue to utilize “holes” in the schedule. The name
“backfilling” was coined by Lifka to describe the EASY scheduler for the Argonne SP1 [10],
although the concept was also present in earlier systems (e.g. [8]).

It is desirable that a scheduler with backfilling will support two conflicting goals: on one
hand, it is desirable to move as many short jobs forward, in order to improve utilization and
responsiveness. On the other hand, it is also desirable to avoid starvation for large jobs, and
in particular, to be able to predict when each job will run. Different versions of backfilling
balance these goals in different ways.

2.1 Conservative Backfilling

Conservative backfilling is the vanilla version usually assumed in the literature (e.g. [6, 3]),
although it seems not to be used. In this version, backfilling is done subject to checking
that it does not delay any previous job in the queue. We call this version “conservative”
backfilling to distinguish it from the more aggressive version used by EASY, as described
below. Its advantage is that it allows scheduling decisions to be made upon job submittal,
and thus has the capability of predicting when each job will run and giving users execution
guarantees. Users can then plan ahead based on these guaranteed response times. Obviously
there is no danger of starvation, as a reservation is made for each job when it is submitted.

It is easier to describe the algorithm to decide if a certain job can be used for backfilling
as if it starts from scratch at each scheduling operation, with no information about prior
commitments (Fig. 2). This algorithm creates a profile of free processors in future times
as a linked list. Initially, this is a monotonically decreasing profile based on the currently
running jobs (top of Fig. 3). Then the queued jobs are checked in order of arrival, to see if they
can backfill and start execution immediately. However, jobs that cannot start immediately
cannot be ignored. Rather, the profile is scanned to find when enough processors will be
available for each queued job to start (this point in time is called the anchor point for that
job). Then scanning is continued to see that the required processors will stay available till
it terminates. If so, the job is assigned to this anchor point, and the profile is updated to
reflect the processors allocated to it.

input:

e list of queued jobs with nodes and time requirements
o list of running jobs with node usage and expected termination times
e number of free nodes

algorithm conservative backfill from scratch:

1. generate processor usage profile of running jobs

(a) sort the list of running jobs according to their expected termination time

(b) loop over the list dividing the future into periods according to job ter-
minations, and list the number of processors used in each period; this is
the usage profile

2. try to backfill with queued jobs

(a) loop on the list of queued jobs in order of arrival
(b) for each one, scan the profile and find the first point where enough
processors are available to run this job. this is called the anchor point

i. starting from this point, continue scanning the profile to ascertain
that the processors remain available until the job’s expected termi-
nation

ii. if so, update the profile to reflect the allocation of processors to this
job

iii. if not, continue the scan to find the next possible anchor point, and
repeat the check

(c) the first job found that can start immediately is used for backfilling

Figure 2: The conservative backfilling algorithm, when run from scratch disregarding previ-
ous execution guarantees.

An example is given in Fig. 3. The first job in the queue does not have enough processors
to run, so a reservation for it is made after the first two running jobs terminate. The second
queued job has a potential anchor point after only one job terminates, but that would delay
the first job; therefore the second anchor point is preferred. Thus adding job reservations
to the profile is the mechanism that guarantees that future arrivals do not delay previously
queued jobs. The third job can be scheduled immediately, so it is used for backfilling.

It is most convenient to maintain the profile in a linked list, as it may be necessary to
split items into two when a newly scheduled job is expected to terminate in the middle of a
given period. In addition, an item may have to be added at the end of the profile whenever
a job extends beyond the current end of the profile. The length of the profile is therefore
proportional to the number of jobs in the system (both queued and running), because each

free

running jobs

1st queued job

T U — *

now anchor

2nd queued job

AW *

now anchor 1 anchor 2

A A R | backfill
e o e
IR
S e S R S e

paseiatatatoleteteletelototetutatatetotets 7

L et]
Seetetetetatatetetetetetetotetetetetsl
SetatetulotatatoletotoTotottete!
Pttt ts e e te ettt ts
ofofoteletetetetetetateteleleletototetel
stetatateletetatetetototetototetetototy’

3rd queued job

Figure 3: Example of conservative backfilling.

job adds at most one item to the profile. As the profile is scanned once for each queued job,
the complexity of the algorithm is quadratic in the number of jobs.

The above algorithm leaves one question unanswered. Jobs are assigned a start time
when they are submitted, based on the current usage profile. But they may actually be able
to run sooner because previous jobs terminated earlier than expected. The question is what
to do when this happens. Options are

e do nothing, and allow future arrivals to use the idle processors via backfilling, or use
this to increase the flexibility of the scheduling, as described below.

e initiate a new round of backfilling when these resources become available. this can
move small jobs way ahead of their originally assigned start time.

e retain the original schedule, but compress it. This stays closest to the start times
decided when the jobs were submitted so it may be the most convenient for users.

The second option — re-scheduling all the jobs — sounds very promising, but turns out
to violate the execution guarantees made by conservative backfilling. The guarantee is
embodied in the system’s prediction of when each job will run. As each job is submitted,
the system scans the usage profile, finds the earliest time that the new job can run without
delaying any previous job, and guarantees that the job will start at this time or earlier. In
some cases, this guaranteed time will be the result of backfilling with this job. If a new
round of backfilling is done later, with different data about job runtimes due to an early
termination, the same job may not be backfilled and will therefore run much later than
the guaranteed time. An example is given in Fig. 4: according to the original schedule,
the second queued job can backfill and start at time T'1, but after the bottom running job
terminates much earlier than expected, the first queued job can start earlier too, leaving no
space for backfilling. The second queued job therefore has to start at the later time T'3.
The preferred choice is therefore compression, meaning that the original schedule is re-
tained, but each job is moved forward as much as possible. This can be done in either of
two ways. In the first, the profile is re-generated from scratch, but the jobs are considered in
the order they appear in the original schedule, rather than in the order of arrival. Returning
to the example in Fig. 4, the second queued job stays in front and moves up from 71 to
the time of the early termination, while the first queued job moves up from 72 to T4. The
second option is to retain the profile and update it one job at a time. For each job, we
remove it from the profile, and then re-insert it at the earliest possible time. This approach
has two advantages: first, the jobs can be considered in the order of arrival, so jobs that
are waiting longer get a better chance to move forward. Second, jobs provably do not get
delayed, because at worse each job will be re-inserted in the same position is held previously.
The use of compression also has another implication: as the schedule is maintained and
isn’t changed by future events, it also makes sense to maintain the usage profile continuously.
As jobs arrive and terminate, the profile is updated rather than being re-generated from
scratch each time. Thus the algorithm in Fig. 2 is replaced by two separate procedures:

backfill

original
schedule

first

running jobs gueued jobs

repeated
backfilling
after early
termination

first
gueued jobs

compressed
original
schedule

* — first

time queued jobs
now T4

Figure 4: Repeated backfilling after a running job terminates earlier than expected may
cause a job that was expected to backfill to actually run later than the original prediction.
It is therefore better to just compress the original schedule.

input:

e list of queued jobs with nodes and time requirements
o list of running jobs with node usage and expected termination times
e number of free nodes

algorithm EASY backfill:

1. find the shadow time and extra nodes

(a) sort the list of running jobs according to their expected termination time

(b) loop over the list and collect nodes until the number of available nodes
is sufficient for the first job in the queue

(c) the time at which this happens is the shadow time

(d) if at this time more nodes are available than needed by the first queued
job, the ones left over are the extra nodes

2. find a backfill job

(a) loop on the list of queued jobs in order of arrival
(b) for each one, check whether either of the following conditions hold:

i. 1t requires no more than the currently free nodes, and will terminate
by the shadow time, or

ii. 1t requires no more than the minimum of the currently free nodes
and the extra nodes

(c) the first such job can be used for backfilling

Figure 5: The EASY backfilling algorithm.

e Upon arrival, the first possible starting time for the new job is found based on the
current profile, and the profile is updated. This is just the inner loop of the original
algorithm.

e Upon termination, the profile is scanned and the schedule is compressed.

The complexity of the insertion procedure is only linear in the number of jobs, rather than
quadratic. The complexity of compression is quadratic, because the profile is scanned again
for each job.

2.2 EASY Backfilling

Conservative backfilling moves jobs forward only if they do not delay any previously queued
job. EASY backfilling takes a more aggressive approach, and allows short jobs to skip ahead
provided they do not delay the job at the head of the queue [10]. Interaction with other

backfill

free ¢N

— AN
é\/; f first
running jobs time _ queued jobs
now shadow time

backfill

free ¢N W extra

| ==
A\ Y
|
| >
m\ — first
running jobs time queued jobs
now

Figure 6: The two conditions for backfilling in the EASY algorithm.

jobs is not checked, and they may be delayed, as shown below. The objective is to improve
the current utilization as much as possible, subject to some consideration of queue order.
The price is that execution guarantees cannot be made, because it is impossible to predict
how much each job will be delayed in the queue. Thus the algorithm is actually not as
deterministic as stated in its documentation.

The algorithm is shown schematically in Fig. 5. This algorithm is executed if the first
job in the queue cannot start, and identifies a job that can backfill if one exists. Such a job
must require no more than the currently available processors, and in addition it must satisfy
either of two conditions that guarantee that it will not delay the first job in the queue (Fig.
6): either it will terminate before the time when the first job is expected to commence (the
“shadow” time), or else it will only use nodes that are left over after the first job has been
allocated its nodes (the “extra” nodes).

This algorithm has two properties that together create an interesting combination.

Property 1 Queued jobs may suffer an unbounded delay.

FCFS free¢
ﬁ \ N first
—_—
running jobs time gueued jobs
now
backfill
EASY free¢& W
i \
delay
s
running jobs time queued jobs
now

Figure 7: In EASY, backfilling may delay queued jobs.

Proof sketch: The reason for this is that if a job is not the first in the queue, new jobs
that arrive later may skip it in the queue. While such jobs are guaranteed not to delay the
first job in the queue, they may indeed delay all other jobs. This is the reason that the
system cannot predict when a queued job will eventually run. An example is shown in Fig.
7: the backfill job does not delay the first job in the queue, but it does delay the second
job. The length of the delay depends on the length of the backfill job, which in principle is
unbounded. ||

In practice, though, the job at the head of the queue only waits for currently running
jobs, so if there is a limit on job runtimes then the bound on the queueing time is the product
of this limit and the rank in the queue.

Property 2 There is no starvation.

Proof sketch: The queueing delay for the job at the head of the queue depends only on
jobs that are already running, because backfilled jobs will not delay it. Thus it is guaranteed
to eventually run (because the running jobs will either terminate or be killed when they
exceed their declared runtime). Then the next job becomes first. This next job may have
suffered various delays due to jobs backfilled earlier, but such delays stop accumulating once

10

it becomes first. Thus it too is guaranteed to eventually run. The same arguments show
that every job in the queue will eventually run. | |
As noted, EASY sacrifices predictability for potentially improved utilization, by using
more aggressive backfilling. However, it is not clear that increasing the momentary utilization
at a given instant also contributes to the overall utilization over a long time. A counter
example is shown in Fig. 8. Therefore detailed simulations are required to evaluate the real
contribution of this approach. The results of such simulations are presented below.

3 Experimental Results

A number of experiments were conducted to compare the different versions of backfilling
described above. The first was based on a general parallel workload model, and assumed
perfect knowledge about job runtimes. The second made direct use of workload traces

collected from SP2 sites using EASY.

3.1 Evaluation with Workload Model

The first simulation used a workload model derived from traces taken on several production
systems, and used previously in [3]. Such a model allows the load on the simulated system
to be modified in a controlled manner, to see how performance depends on system load. As
the model does not contain user estimates of the runtime, we use the actual times as the
estimate. This means that both algorithms benefit from accurate estimates.

The performance metric used is the functional relationship of bounded slowdown on
load. This should be understood as a queueing system, where load causes jobs to be delayed.
Slowdown is used rather than response time to normalize all jobs to the same range. Bounded
slowdown eliminates the emphasis on very short jobs [5]; a threshold of 10 seconds was used.
For the record, the equation is

Ty

— if T 10

T, 1 d >
b_sld =

T

-t otherwise

10

where b_sld is the bounded slowdown, T} is the job’s runtime on a dedicated system, and T}
is the job’s runtime on the loaded system (i.e. the actual runtime plus the time waiting in
the queue).

Results are that the performance of conservative backfilling and EASY backfilling is
practically identical, indicating that the aggressiveness of EASY backfilling is unwarranted
(Fig. 9). The conservative algorithm only has a slight advantage at very high, practically
unrealistic, loads. Interestingly, both algorithms also perform about the same amount of
backfilling, with the conservative one doing a bit more than the more aggressive EASY!

11

"Un.I FUoJ o} UO UOTRZI[TIN opRIFOp ARUI JI ‘TOAOMOJ] "UNI JI0YS 9y} UO UOIIRZI[IIN Y[}
soaoxduir 31 0s ‘FUIJ[YIRYG SAIJRAISSTOI URY) 9AISSOIFSR 210U ST SUI[[Y3IRq X GV/5 R 2InSI]

uonezijin 9489 uonezijnn 940/
sqol pananb

sy sqol Buluuni

-

/

2

byt
o
ote?

-

<
b8
e
otet

o
s
25
25
!

e
2525
%5
e
S

[S2teted

T
bite!
205
itele!
A

-

T
e
o
e

R
et
<5
oteta?

o
s
25
25
!

e
2525
%5
e
S

-

T
be
o
ote?

9AIleAIDSUO0D

TR
st
Badsesesons
Soteterste!
[Zetetatete!

Mmou

uonezijnn 9%/.9 uonezi|inn %06
sqol pananb

1s1l

sqol Buiuunu
/I\

I
53
1§
o
%

-
L
&
%
s

32
5
2%
2585

o
2535
bt
%%
o

T
sHitetes
Sreds
oatets!

25

!

T
55
505

o*a%

2

20
L
A

i
s

{50

tetety

55
Sotatytator!
STt ety tytets

2K

%
52
{0

e

Fotet

T

I
S

s
o

%o

ASV3

-

T
e
o
ot

=
5
b
<5
%
ks

K\ A

MOou

[19eq

12

1000

conservative —+—

800

600

400 ~

average bounded slowdown

200 -

o 1 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
system load

Figure 9: Experimental results comparing conservative backfilling and EASY backfilling.

1

conservative —+—
09 r

0.8
0.7
0.6

05

backfilling rate

0.4 r

0.3

0.2

01 1 1 1 1 1 1 1
01 02 03 04 05 06 07 08 09 1
system load

Figure 10: The amount of backfilling done by the two schemes.

(Fig. 10) In any case, at high loads nearly all jobs are backfilled, which explains the big
improvement that is observed relative to FCFS.

3.2 Evaluation with Real Workload

Using a real workload for evaluating a scheduler is important for two reasons. First, work-
loads change from installation to installation, so this sort of evaluation is the most accurate
for a specific site. Second, the observed workload actually depends on the scheduler being
used, because users adapt their requests to what the system supports. Thus it is best to

13

33 49 58
month || jobs || EASY | cons || EASY | cons || EASY | cons
Jan 635 8176 | 8306 1769 | 1586 492 | 413
Feb 562 1886 | 2580 328 | 318 201 | 201
Mar 1406 || 10077 | 10366 1088 | 1137 540 | 519
Apr 493 510 496 112 7 119 39 38
May 529 2954 | 2850 410 | 397 145 | 145
Jun 566 2551 | 2508 438 | 421 213 | 213
Jul 550 4075 | 3341 623 | 607 315 | 312
Aug 462 3238 | 3540 807 | 860 251 | 251

Table 1: Average bounded slowdown results for the [UCC workload.

compare backfilling algorithms for the SP2 using a direct trace from an SP2 system using
EASY. An additional advantage is that actual user estimates are then available. We used
two traces: one from the 64-node machine installed at the Inter-University Computation
Center (IUCC) in Tel-Aviv, Israel, and the other from the 100-node machine installed at the
Royal Institute of Technology (KTH) in Stockholm, Sweden.

The workload trace recorded at TUCC covers the period of January through August of
1997, and includes 5203 useful jobs. During this time, the machine was scheduled by IBM’s
LoadLeveler, and EASY was not used. Therefore this trace does not include data about user
estimates, and we again used the real times as the estimates. The workload trace from KTH
spans the period from October 1996 to August 1997, and includes 28240 jobs. This system
was scheduled using EASY, and the user estimates were recorded in the trace and used by
us.

Given that all the details — including each job’s time of arrival — are part of the workload
data, the simulations just provide a single data point. To better characterize the relationship
between the algorithms we therefore do two things: first, we report the results for each month
separately, leading to multiple data points for somewhat different workloads. Second, in the
case of the [UCC machine, we simulate the system at three different sizes, thus (artificially)
creating different load conditions. The sizes used are 33, 49, and 58 nodes. This reflects
the actual division of nodes into pools: 6 nodes are used for interactive work and as a file
server, leaving 58 for all the batch jobs. Of these, 9 nodes are used as the general batch
pool, leaving 49 nodes for a special pool used exclusively by large jobs with 16/17 or 32/33
nodes (17 and 33 nodes are used by master-slave type jobs). Previously, this pool only had
33 nodes.

The results for [UCC are shown in Table 1. In most cases, the results indicate that both
algorithms lead to similar or even identical average bounded slowdown values. In some cases
the conservative algorithm has a lower average slowdown, and in some the EASY algorithm
leads to a lower average slowdown. The only trend is that the EASY algorithm tends to
perform better under high loads (that is, when less nodes are assumed). In the 33-node
simulation, EASY beat conservative half of the time, whereas in the 58-node simulation

14

month || jobs || EASY | cons

Sep 86 2 2
Oct 2377 93 76
Nov 1988 128 | 135
Dec 2294 86 | 124
Jan 2899 97 81

Feb 2908 122 | 134
Mar 2078 104 | 118

Apr 2820 83 92
May 4061 67 60
Jun 2694 37 31
Jul 2160 32 34
Aug 1925 50 57

Table 2: Average bounded slowdown results for the K'TH workload.

conservative won half of the time the the rest were a tie. In any rate, it seems that the
conservative algorithm does not degrade performance relative to the more aggressive EASY
algorithm.

The results for KTH are shown in Table 2. Again, the performance of both algorithms
is similar, with a slight and non-decisive advantage for EASY (it is better in 7 cases, while
conservative is only better in 4).

To summarize, the results of the simulations using real workload traces agree with the re-
sults of the simulations using the workload model: both show that the performance obtained
from the two algorithms is similar. In other words, the performance of the conservative
algorithm is about as good as that of the EASY algorithm, and the added predictability
comes at no cost in performance.

3.3 User Estimates of Runtime

The concept of backfilling is based on estimates of job runtimes. It has been assumed that
users would be motivated to provide accurate estimates, because jobs would run faster if the
estimates are tight, but would be killed if the estimates are too low. Using the data contained
in the EASY workload traces from KTH, we can check the validity of this assumption.

The data is shown in Fig. 11, and includes records of 20054 jobs. On the left is a histogram
showing what percentage of the requested time was actually used. At first glance this seems
promising, as it has a very pronounced component at exactly 100% (with 3215 jobs, or 16%
of the total). However, this is largely attributed to jobs that reached their allocated time
and where then killed by the system — this happened to 3204 of the 3215 jobs, or 99.7%!.

INote that this is not necessarily bad: applications may checkpoint their state periodically, and then be
restarted from the last checkpoint after being killed. However, there is no direct data about how often this
is actually done. Indirect data is that 793 of the jobs killed by the system had requested 4 hours, which

15

3500

2h
3000 R
2500 g 1.5h
8
£ 2000 +] E
o =
9] [1h
€ 1500 - . g 3
2 45m | ;
1000 4 o
30m | | |
: .
500 1 1 15m ‘i‘!}
0)]]] L me ‘ % ‘ i ‘
0 20 40 60 80 100 15m 30m 45m 1h 1.5h 2h
percentage of requested time used requested time

Figure 11: User runtime estimates and actual runtimes, from the SP2 at the Royal Institute

of Technology (K'TH), Stockholm, Sweden.

As the rest of the distribution is quite flat, the conclusion is that user estimates are actually
rather poor.

The same data is shown again in the scatter plot on the right of the figure, which shows
actual pairs of estimated runtime and the corresponding actual runtime (actually only jobs
requesting up to 2 hours are shown, but this is the vast majority of jobs. The highest requests
were for 60 hours). This shows that users often, but not always, round their estimates to a
“nice” number (typically multiples of 5 minutes up to about an hour and a half). However,
despite the relatively wide repertoire of estimates that are used, all of them are equally
inaccurate: for every popular estimate, there is a nearly continuous line of dots representing
jobs with runtimes ranging uniformly from zero up to the estimate. The system typically
kills jobs that do not terminate by the estimated time, leading to the triangular shape of
the scatter plot.

In order to check the sensitivity of the backfilling algorithms to such poor estimates, we
tested them with estimates of various qualities. Using the KTH workload, we generated
new user estimates that (for each job) are chosen at random from a uniform distribution
in the range [r, f - r], where r is the job’s actual runtime, and f is a “badness” factor (the
larger f, the less accurate the estimates). The results are shown in Table 3, where f = 1
indicates completely accurate estimates, and the bottom line gives the results of the actual
user estimates from the trace. Three conclusions can be reached:

e Our model of inaccuracy does not capture the full badness of real user estimates. The
results for the original estimates are worse than those with our worst estimates.

is the limit imposed during the daytime. It is plausible that many of these were restartable, leading to an
estimate of about 1 in 4 jobs.

16

f EASY | cons
1 62 61
4 57 53
11 51 44
31 57 45
101 62 57
301 59 52
users 81 84

Table 3: Average bounded slowdown for the complete KTH workload with varying runtime
estimates.

e Accurate estimates are not necessarily the best. It seems that if the estimates are
somewhat inaccurate, this gives the algorithms some flexibility that leads to better
schedules. We are looking into this phenomenon in a followup study.

o The conservative algorithm seems to operate better than the EASY algorithm when
faced with our inaccurate estimates. However, it should be remembered that this is
not necessarily true with the inaccurate user estimates.

4 Conclusions

Backfilling is advantageous because it provides improved responsiveness for short jobs com-
bined with no starvation for large ones. This is done by making processor reservations for the
large jobs, and then allowing short jobs to leapfrog them if they are expected to terminate
in time. The expected termination time is based on user input.

SP2 installations using EASY, which introduced backfilling, report much improved sup-
port for large jobs relative to early versions of LoadLeveler. However, EASY still does not
allow the time at which a job will run to be estimated with any degree of accuracy, because
of its aggressive backfilling algorithm. We showed that it is possible to add predictability
without loss of utilization by using a more conservative form of backfilling, in which short
jobs can start running provided they do not delay any previously queued job.

While backfilling was developed for the SP2, and our evaluations used workload traces
from SP2 sites, this work is applicable to any other system using variable partitioning. This
includes most distributed memory parallel systems in the market today.

5 Acknowledgements

This research was supported by the Ministry of Science and Technology. Thanks to Jonathan
Horen and Gabriel Koren of TUCC and Lars Malinowsky of KTH for their help with the

workload traces.

17

References

1]

2]

D. Das Sharma and D. K. Pradhan, “Job scheduling in mesh multicomputers”. In Intl.
Conf. Parallel Processing, vol. I, pp. 251-258, Aug 1994.

D. G. Feitelson, A Survey of Scheduling in Multiprogrammed Parallel Systems. Research
Report RC 19790 (87657), IBM T. J. Watson Research Center, Oct 1994.

D. G. Feitelson and M. A. Jette, “Improved utilization and responsiveness with gang
scheduling”. In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and
L. Rudolph (eds.), pp. 238-261, Springer Verlag, 1997. Lect. Notes Comput. Sci.
vol. 1291.

D. G. Feitelson and B. Nitzberg, “Job characteristics of a production parallel scientific
workload on the NASA Ames iPSC/860”. In Job Scheduling Strategies for Parallel
Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 337-360, Springer-Verlag, 1995.
Lect. Notes Comput. Sci. vol. 949.

D. G. Feitelson, L. Rudolph, U. Schwiegelshohn, K. C. Sevcik, and P. Wong, “Theory
and practice in parallel job scheduling”. In Job Scheduling Strategies for Parallel Pro-
cessing, D. G. Feitelson and L. Rudolph (eds.), pp. 1-34, Springer Verlag, 1997. Lect.
Notes Comput. Sci. vol. 1291.

R. Gibbons, “A historical application profiler for use by parallel schedulers”. In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 5877, Springer Verlag, 1997. Lect. Notes Comput. Sci. vol. 1291.

S. Hotovy, “Workload evolution on the Cornell Theory Center IBM SP2”. 1In Job
Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph (eds.),
pp. 27-40, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

Intel Corp., iPSC/860 Multi-User Accounting, Control, and Scheduling Utilities Manual.
Order number 312261-002, May 1992.

P. Krueger, T-H. Lai, and V. A. Dixit-Radiya, “Job scheduling is more important than
processor allocation for hypercube computers”. [IEEFE Trans. Parallel & Distributed
Syst. 5(5), pp. 488-497, May 1994.

D. Lifka, “The ANL/IBM SP scheduling system”. 1In Job Scheduling Strategies for
Parallel Processing, D. G. Feitelson and L. Rudolph (eds.), pp. 295-303, Springer-Verlag,
1995. Lect. Notes Comput. Sci. vol. 949.

C. McCann, R. Vaswani, and J. Zahorjan, “A dynamic processor allocation policy for
multiprogrammed shared-memory multiprocessors”. ACM Trans. Comput. Syst. 11(2),
pp- 146-178, May 1993.

18

[12] P. Messina, “The Concurrent Supercomputing Consortium: year 17. IEEE Parallel &
Distributed Technology 1(1), pp. 9-16, Feb 1993.

[13] J. Skovira, W. Chan, H. Zhou, and D. Lifka, “The EASY - LoadLeveler API project”.
In Job Scheduling Strategies for Parallel Processing, D. G. Feitelson and L. Rudolph
(eds.), pp. 41-47, Springer-Verlag, 1996. Lect. Notes Comput. Sci. vol. 1162.

19

