
E�cient Management of Parallelism inObject-Oriented Numerical SoftwareLibrariesSatish BalayWilliam D. GroppLois Curfman McInnesBarry F. Smith 1 2ABSTRACT Parallel numerical software based on the message-passing model is enormously compli-cated. This paper introduces a set of techniques to manage the complexity, while maintaining highe�ciency and ease of use. The PETSc 2.0 package uses object-oriented programming to conceal thedetails of the message passing, without concealing the parallelism, in a high-quality set of numericalsoftware libraries. In fact, the programming model used by PETSc is also the most appropriate forNUMA shared-memory machines, since they require the same careful attention to memory hierar-chies as do distributed-memory machines. Thus, the concepts discussed are appropriate for all scalablecomputing systems. The PETSc libraries provide many of the data structures and numerical kernelsrequired for the scalable solution of PDEs, o�ering performance portability.1 IntroductionCurrently the only general-purpose, e�cient, scalable approach to programming distributed-memoryparallel systems is the message-passing model. Other approaches, based on parallel languages or com-piler directives, have worked well on shared-memory computers, particular hardware platforms (e.g.,CM-5) [Thi93], or speci�c problems but have never been able to demonstrate general applicability.The chief drawbacks to the message-passing model have been(1) lack of portability due to varying syntax for message passing orine�cient and poorly designed portable systems, and(2) the di�culty experienced by end users in writing complicatedmessage-passing code.Fortunately, with the development of the Message Passing Interface (MPI) [GLDS96b], [MPI94],[GLS94], [SOHL+95], drawback (1) is no longer a problem. MPI is an e�cient, robust standard towhich the major vendors are adhering. In addition, several high-quality implementations are freelyavailable [BDV94], [GLDS96a]. Another advantage of MPI is that it is fully usable from Fortran 77,C, and C++; this feature allows programmers to use the language that is most appropriate for aparticular task or with which they are most comfortable. Another important aspect of MPI is thatit provides speci�c mechanisms to support the development of portable software libraries that mostprevious message-passing systems did not provide.1To appear inModern Software Tools in Scienti�c Computing, E. Arge, A. M. Bruaset and H. P. Langtangen,Ed. Birkhauser Press, 1997.2Mathematics and Computer Science Division, Argonne National Laboratory, 9700 South Cass Ave.,Argonne, IL 60439-4844. balay@mcs.anl.gov, gropp@mcs.anl.gov, curfman@mcs.anl.gov, bsmith@mcs.anl.gov,http://www.mcs.anl.gov/petsc/petsc.html.

Drawback (2) is far more challenging; however, the implementation of high-quality parallel numer-ical libraries using modern software engineering practices can ease this di�culty enormously. Thispaper discusses speci�c techniques used in PETSc 2.0 (the Portable, Extensible Toolkit for Scien-ti�c computation) to allow end users, with relative ease, to write sophisticated parallel applicationcodes that involve the numerical solution of partial di�erential equations (PDEs) through the use ofportable, e�cient numerical libraries. Thus, we assert that the combination ofthe message-passing model+carefully designed and implemented parallel numerical librariesis the solution to the problem of e�ciently using large-scale distributed-memory, as well as clusteredand NUMA (non-uniform memory access) shared-memory computers. This approach enables us toface the explicit tradeo�s that must be made to balance the code's performance (computationale�ciency) and ease of use (programmer e�ciency). Most important, this combination allows thegradual process of improving performance by the addition of new computational kernels, whileretaining the remainder of the correctly working libraries and application code.Over the past �fteen years, various government funding agencies world-wide have invested heav-ily to make parallel computing usable for more than very special high-budget custom projects.Aside from hardware development, much of the research funding has been directed toward (1) basiccomputer science research in parallel programming paradigms and languages and (2) basic math-ematical research in parallel algorithm development and analysis. These two research thrusts haveoften been orthogonal, with neither leveraging the corresponding advances in the other �eld. Thus,the resources devoted to the high-performance communication and computation (HPCC) commu-nity unfortunately have not led to the advances in the usability of parallel computing that many hadanticipated. Developing e�cient applications for massively parallel processors (MPPs) and clustersis still di�cult and requires a large commitment from application scientists.The approach used in PETSc is to encapsulate mathematical algorithms using computer sciencedevelopments in object-oriented programming and message passing. Object-oriented programmingtechniques enable us to manage the complexity of e�cient numerical message-passing codes. Allthe PETSc software is freely available and used around the world in a variety of application areas[BGMS96].Our approach does not attempt to completely conceal parallelism from the application program-mer. Rather, the user initiates combinations of sequential and parallel phases of computations, butthe library handles the detailed (data-structure dependent) message passing required during thecoordination of the computations. This provides a good balance between ease of use and e�ciencyof implementation. In this article we discuss six of our main guiding design principles; the �rst fourfocus on allowing the application programmer to achieve high performance, while the last two focuson ease of use of the libraries.� Performance{ overlapping communication and computation,{ determining within the library the details of various repeated communications, and op-timizing the resulting message passing code (similar to the inspector/executor model ofPARTI/Chaos [ASS93]),{ allowing the user to dictate exactly when certain communication is to occur, and{ allowing the user to aggregate data for subsequent communication� Ease of use{ allowing the user to work e�ciently with parallel objects without speci�c regard for whatportion of the data is stored on each processor, and2

{ managing communication whenever possible within the context of higher-level operationson a parallel object or objects instead of working directly with lower-level message-passingroutines.Note that the �rst four principles are chie
y related to reducing the number of messages, minimizingthe amount of data that needs to be communicated, and hiding the latency and limitations of thebandwidth by sending data as soon as possible, before it is required by the receiving processor. The sixguiding principles, embedded in a carefully designed object-oriented library, enable the developmentof highly e�cient application codes, without requiring a large e�ort from the application programmer.We note that PETSc is not intended to be a complete parallel mathematical software library likethe Thinking Machines' Scienti�c Software Library; rather, PETSc focuses on components requiredfor the solution of PDEs and related problems.Another strength of the approach of message passing combined with numerical libraries is thatapplication codes written with this model will also run well on shared-memory computers|often aswell as codes custom written for a particular machine. This translation occurs because even shared-memory machines have a memory hierarchy that message-passing programs must inherently respect.For the small number of code locations where taking explicit advantage of the shared memory canlead to improved performance, alternative library routines that bypass the message-passing systemmay easily be provided, thus retaining a performance-portable library.Other researchers are also investigating object-oriented techniques and programming strategiesfor large-scale numerical software. A few of the projects that are most closely related to PETSc inthe problems they address include Di�pack [BL96] (a collection of uniprocessor libraries for solvingPDEs), Aztec [HST95] (a library for iteratively solving linear systems in parallel), and POOMA[RCH+96] (a framework for parallel scienti�c simulation). The unique aspect of PETSc comparedwith other packages is the complete integration of the six guiding principles throughout its design.This article is organized as follows. In Section 2 we introduce the message-passing programmingmodel and discuss why it can result in highly e�cient programs but why programming with rawmessage passing is di�cult for most numerical applications. Section 3 introduces the concept ofa parallel distributed object (for example, a matrix) and explains how it is managed in PETSc.Section 4 brie
y explains the importance of each of the six conceptual principles introduced above.Section 5 introduces the design of several fundamental PETSc objects and for each explains howthe six guiding principles are related. This section discusses several important components andoperations within numerical libraries for PDEs, namely� vector assemblies,� vector scatters and gathers,� matrix assemblies,� parallel matrix-vector products,� parallel computation of Jacobian matrices, and� linear and nonlinear solvers.We discuss our implementation techniques for balancing e�ciency and ease of use. We concludethe section by explaining how all three principles of object-oriented programming are crucial to themanagement of complexity in the PETSc design. Section 6 demonstrates the performance possibilitiesof an application code written using PETSc by presenting results for a three-dimensional, fullyimplicit Euler simulation.This article is not intended as a users guide or introduction to the use of PETSc; for that informa-tion we refer readers to the PETSc users manual [BGMS95]. Rather, this article discusses in sometechnical detail several speci�c aspects that are important in the design of PETSc. In fact, usersof PETSc do not have to understand the technical details discussed here in order to use PETSce�ectively. 3

2 The Message-Passing Model for ProgrammingDistributed-Memory Parallel SystemsHardware for parallel computers has been designed in many ways, which can be distinguished bymemory layout and interconnection schemes. The main spectrum includes commonmemory and busshared by all processors, common memory connected to all processors through a switch, separatememory \owned" by one processor but directly accessible to all processors, and separate memoryaccessible only to its local processor [HJ88]. Each approach has both advantages and disadvantages.The commonmemory approach is limited by the ability of the memory banks to serve all processorse�ciently, while the distributed-memory approach is limited by the need of all processors to sharedata. Thus, even moderately scalable systems (and single-processor systems as well) have a hierarchyof local and remote memory that is managed directly by the hardware.At the programmer's level, of course, the details of the memory systems are well hidden. Theprogrammer uses an abstract memory model (or parallel programming model) that is somehowrelated, through system software and hardware, to the physical machine.2.1 Flat Address SpaceIn the simplest parallel programming model, the application programmer works with a
at memorystructure; all processors share the same address space and are free to change data at any location inmemory. This model's inherent simplicity is countered by two main drawbacks.� The user must ensure that two (or more) di�erent processes do not generate inconsistentvalues in memory. For example, two processes simultaneously incrementing the same memorylocation by one may actually increase the value by only one, rather than the intended two.While techniques for this are well understood in theory, including locks and monitors, it doesrequire care on the part of the user to prevent programming errors and hot-spots (bottlenecksin the program where several processes are waiting on the same locks).� A
at address space is not scalable; even with very sophisticated hardware only extremelycarefully written code can completely utilize more than a few processors. To achieve goodperformance, even recent machines such as the SGI/Cray ORIGIN2000 will require libraries,such as PETSc, that truly acknowledge and respect the memory hierarchy of the machine.In fact, such carefully tuned shared-memory code strongly resembles message-passing code inthat chunks of data are moved among \local" memories in a very controlled way.Parallelizing compilers have been postulated as the cure for these two problems, and on a smallscale they have been quite successful. But even on systems for which parallelizing compilers workwell, they are often limited to highly structured code for which the compiler can detect parallelism(e.g., double loops and rectangular array operations). Compilers that can handle general sparsematrices, for example, are only at the beginning research stages, while these are exactly the types ofmatrices that applications scientists need to use on a regular basis. Even if parallelizing compilersvastly improve, it seems highly unlikely that they will ever be able to compile complex sequentialapplication codes into even moderately e�cient parallel codes. In fact, few do well even in entirelysequential codes for sparse matrix operations.2.2 Message PassingThe other standard parallel programming model is message passing; in this model each processcan directly access only its own memory and must explicitly communicate with other processesto access the data in their memories. The communication is done through the send and receiveoperations. Thus, both the sending and receiving processors must be involved whenever a remote4

memory location is accessed. For example, if process 1 wanted to add to its local variable x the valuey from processor 0, the code for the two processes could look like the following:Process 0 code Process 1 code-------------- --------------MPI_Send(y,......); MPI_Recv(mess,....);x += mess; /* Add the remote data to x */The Message Passing Interface (MPI) standard contains a wide variety of basic communicationroutines, including reductions, scatters, and broadcasts [MPI94],[GLS94], [SOHL+95]. But theseroutines are predicated on both the sending and receiving processors being aware of the data's originand destination. Consequently, writing complicated message-passing codes is tedious and prone toerror. To illustrate this point, we consider a speci�c example: sparse matrix-vector multiplication,y = A � x. This operation occurs in most iterative linear solvers, scalable eigenvalue solvers, etc.Why Writing Message-Passing Code Is TediousGiven a parallel sparse matrix A and a parallel vector x, we wish to write a routine that scalablyand e�ciently computes A � x. We assume that A is distributed by rows among a collection ofprocessors; that is, each processor contains (for simplicity) an adjacent series of rows of the matrixand the corresponding elements of the vector. See the matrix depicted below for an example divisionamong three processors.One could easily code a naive sparse matrix-vector product using MPI. Each processor couldbroadcast its elements of the vector x to all other processors with the commandMPI_Allgatherv(local,localsize,MPI_DOUBLE,global,localsizes,...);Here each processor contributes its piece (of length localsize, called local) of the entire vector to acopy of the entire vector (called global), which lies in its entirety on each processor. The advantagesof this approach are that the communication call is simple, and every processor knows exactly whatmessages it must send and receive. One disadvantage is that this code is not scalable; the amount ofcommunication grows as O(n), where n is the number of columns in the matrix. In addition, memoryis wasted since each processor must store a complete copy of the vector x. Note that even in thissimple case each processor must know the amount of data to expect from all other processors, asdetermined by prior communication (in a setup phase) and given by the array localsizes.To discuss how we can take advantage of matrix sparsity, we consider the following matrix, whichis partitioned by rows among three processors so that processors zero, one, and two \own" sub-matrices consisting of rows 0{2, 3{5, and 6{7, respectively. The corresponding vector is partitionedaccordingly. 0BBBBBBBBBB@ 1 2 0 0 0 0 0 00 5 6 7 0 0 8 09 0 10 11 0 0 12 013 0 0 15 16 17 0 00 18 0 19 20 21 0 00 0 0 22 23 0 24 025 26 27 0 0 28 29 030 0 0 0 0 33 0 34 1CCCCCCCCCCA0BBBBBBBBBB@ x0x1x2x3x4x5x6x7 1CCCCCCCCCCANote that each processor's local submatrix contains certain columns with all zero elements, so thatwhen computing a matrix-vector product, y = A � x, each processor requires only a subset ofthe entries of x. In this example, processor zero does not need x4; x5, and x7; processor one doesnot need x2 and x7; and processor two does not need x3 and x4. To minimize communication,processor zero should distribute x0, x1, and x2 to processor two but only x0 and x1 to processorone. Likewise, processor one need only distribute x3 to processor zero and x5 to processor two.5

Meanwhile, processor two needs to distribute x6 to both processors zero and one. Clearly, for thissmall problem the communication reduction achieved by this organization is not worth the codingdi�culties, but for large sparse problems (e.g., n = 1; 000; 000) for which the communication canpotentially drop to 500 from 1; 000; 000, such reduction is very important. What makes this problemnontrivial is that no processor knows a priori what components of the vector other processors willrequire.Since sparse matrix-vector products are only a small part of a large application code, it is unreal-istic to require an application programmer not highly trained or interested in message-passing pro-gramming to write all the code required to perform e�cient parallel sparse matrix-vector products.In later sections, we discuss how PETSc provides e�cient implementations of these fundamental,low-level parallel routines, in a format immediately useful for an application code.Why Writing Correct Message-Passing Code Is Di�cultNot only is writing message-passing code tedious, it also is technically di�cult, since rather subtleissues become extremely important for guaranteeing robust, correct libraries. Writing such coderequires expert knowledge that most application programmers have neither the time nor interest tomaster.We now present a speci�c example for which a naive but quite reasonable implementation canresult in unexplained deadlock, while a more sophisticated implementation will perform e�cientlyand correctly for all problem sizes and machines. Consider the case of dealing with �nite sizes forthe internal system bu�ers used in message passing. If two processors both initiate blocking sendsto each other at the same time, the data to be transferred must be moved away from the sendingprocessors' bu�ers before the sends can complete and return to the user's code. The data is usuallyplaced in an intermediate bu�er (the details of which vary among machines) until the receivingprocessor can accept the data. If the messages exceed the amount of available bu�er space, thendeadlock can occur. The likelihood of deadlock depends on the past history of the computationand even the order in which packets are switched through the computer. Thus, seemingly randomdeadlock can occur for di�erent runs of the same code.In more complicated applications that use blocking sends, it is not always easy to determinewhether a possibility of deadlock exists. This situation arises because each processor may be run-ning di�erent portions of the code when the deadlock occurs. Also, locating the cause of the deadlockis often di�cult due to its random appearance. There are, of course, techniques to prevent the occur-rence of deadlock, including the use of nonblocking communications and explicit library control ofbu�ering, but these require a more sophisticated and deeper understanding of parallel programmingthan most application programmers have time to master.Another example illustrates degradation of a program's performance, due to a naive, yet seeminglyreasonable, implementation. In this case a collection of processes all simultaneously send data tothe processor to the right (the last processor does not perform a send). In Figure 1 this situationis depicted with eight processors. During the �rst stage, processor 6 actually transfers its messageto processor 7 while processors 1 through 5 wait for their right-hand neighbors to post a receive.During the second stage, processor 5 transports its message to processor 6 while processors 1 through4 continue to wait for their neighbors to post a receive. Thus, the entire communication requires sevenstages, while the underlying hardware may have been able to perform the required communicationin one or at most two stages. Again, the proper use of nonblocking techniques would alleviate thisproblem.Understanding such details in message passing is similar to the necessity of understanding thenumerical e�ects of working with �nite-precision calculations when computing. Most of the time onecan simply use common sense and generate the correct results, but catastrophic failure can occurif one is not grounded in the fundamentals of numerical analysis. Thus, for both message passingand numerical programming, we can encapsulate the needed functionality in software libraries thatallow all users to take advantage of the experts' knowledge.6

SEND SEND SEND SEND SEND SEND SEND RECV

RECV

RECV

RECV

RECV

RECV

RECV

P0 P1 P2 P3 P4 P5 P6 P7

TimeFIGURE 1. Blocking Sends E�ect on PerformanceWe remind the reader that the solution to PDEs at any point is determined mostly by inputdata that is geometrically near that point. Thus, for many application problems involving PDEs, ageometric decomposition of the solution domain among the processors is most appropriate. This leadsimmediately to data locality on the computer, an ideal situation for any NUMA parallel machine,including distributed-memory processors programmed with message passing. Since the bulk of thecomputation involves local data, with careful coding, the computation does not become limited bythe need for massive amounts of communication among the processors. So, for the class of problemsPETSc is intended, scalable computing is at least theoretically achievable.3 Distributed Computational ObjectsPETSc is built around a variety of data structures and algorithmic objects, some of which aredepicted in Figure 2. The application programmer works directly with these objects rather thanconcentrating on the underlying (rather complicated) data structures.The three basic abstract data objects in PETSc are index sets, vectors, and matrices. An indexset is an abstraction of a list of integer indices, which is used for selecting, gathering, and scatteringsubsets of elements. A PETSc vector is an abstraction of an array of values (e.g., coe�cients forthe solution of a PDE), and a matrix represents a linear operator that maps between vector spaces.Each of these abstractions has several representations in PETSc. For example, PETSc currentlyprovides three sequential sparse matrix data formats, four parallel sparse matrix data structures,and a dense representation. Each is appropriate for particular classes of problems. Several datadistribution examples for particular PETSc objects are given in Section 5.Built on top of this foundation are various classes of solver objects, including linear, nonlinear,and timestepping solvers. These solver objects encapsulate virtually all information regarding thesolution procedure for a particular class of problems, including the local state and various options.Details are discussed in Section 5.In general, the data for any PETSc object (vector, matrix, grid, linear solver, etc.) is distributedamong several processors. The distribution is handled by an MPI communicator (called MPI Comm inMPI syntax), which represents a group of processors. When a PETSc object is created, for examplewith the commandsVecCreate(MPI_Comm comm,int m,Vec* vector);MatCreate(MPI_Comm comm,int m,int n,Mat *matrix);SLESCreate(MPI_Comm comm,SLES *linear_solver);the �rst argument speci�es the communicator, thus indicating which processes share the object.The creation routines are collective over all processors in the communicator; thus, when creating aPETSc object, all processors in the communicator must call the creation routine.7

Matrices

KSP
(Krylov Subspace Methods)

PC
(Preconditioners)

Vectors Index Sets

(Linear Equations Solvers)
SLES

LAPACKBLAS

Level of
Abstraction Application Codes

(Time Stepping)
TS

(Nonlinear Equations Solvers)
SNES

PDE Solvers

MPI

DrawFIGURE 2. Organization of the PETSc LibraryThe use of communicators in parallel software libraries is extremely important, since it enablesall communication for a particular operation (e.g., a matrix-vector product) to be isolated fromcommunication in other parts of code. Such encapsulation eliminates the problem of colliding tags(for example, when two libraries inadvertently use the same tag on di�erent messages, one librarymay incorrectly receive a message intended for the other library), which was a serious limitation ofolder message-passing systems.The underlying communicators in PETSc objects ensure that communications for di�erent com-putations are separate. We achieve this segregation upon object creation by immediately duplicatingvia MPI Comm dup() (an MPI function that makes a copy of a given communicator) any communica-tor that is not already a \PETSc communicator" and then denoting it as such by inserting an MPIattribute via MPI Attr put(). An MPI attribute is simply any collection of data a user chooses toattach to a communicator. This PETSc attribute essentially contains a tag number that is assignedto the PETSc object. The tag number is then decremented to ensure that each PETSc object thatshares a common communicator has a unique tag (or tags) for use in its internal communication.4 Six Guiding PrinciplesAs introduced in Section 1, the six guiding principles in the development of the parallel PETScsoftware are strongly interrelated. This section discusses each principle, while the following sectiondescribes their integration into the PETSc design.4.1 Managing the Communication in the Context of Higher-Level Operations onParallel ObjectsRaw message-passing code is often extremely di�cult to understand and debug because, unless thecode is very carefully documented, it is often unclear what speci�c message is associated with a par-ticular operation or data structure in the code. PETSc is designed so that application programmersgenerally need not worry about writing individual message-passing calls. Instead, they can directcommunication as part of higher-level operations on a parallel object or objects. For example, thematrix-vector product interface routine, given by8

MatMult(Mat A,Vec x,Vec y); /* y = A*x */institutes a collection of MPI calls to manage the underlying communication required for the partic-ular data structures being used (see Section 5.2 for details). Additional examples of encapsulatingcomplicated lower-level communication sequences are the PETSc vector scatters/gathers as well asmatrix and vector assembly routines.The ability to encapsulate all details of communication inside a PETSc object/operation is vitalfor building a system that is relatively easy to use. Such organization also facilitates the design ofhigher-level modules, such as linear and nonlinear solvers, which can then focus more clearly onmathematical abstractions rather than being cluttered by excessive communication details.4.2 Overlapping Communication and ComputationOn virtually all modern computers, the data communication required in implementing an algorithmis often more of a limiting factor in its performance than the actual
oating-point operations. Touse a computer e�ciently in numerical computations, it is important to limit data movement and,whenever possible, to perform numerical computation on one set of data while another set of datais in motion.Within MPI, nonblocking operations support overlapping the communication of certain data withcomputation on other data. These nonblocking routines initiate communication but may return tothe calling routine immediately, before the communication is complete. For example, a nonblockingsend for double-precision data of length count can be handled with the code fragmentMPI_Request request; int count, proc, tag;MPI_Status status; void *buffer;MPI_Comm comm;MPI_Isend(buffer,count,MPI_DOUBLE,proc,tag,comm,&request);... /* Do some other computation, etc. */MPI_Wait(&request,&status);Here buffer is the initial address of the send bu�er, proc is the rank (number, where the processorsare numbered from 0 to size-1) of the destination processor, tag is the message tag, comm is thecommunicator, and request is the communication request. Likewise, a basic nonblocking receivecan be handled as follows:MPI_Request request; int count, proc, tag;MPI_Status status; void *buffer;MPI_Comm comm;MPI_Irecv(buffer,count,MPI_DOUBLE,proc,tag,comm,&request);... /* Do some other computation, etc. */MPI_Wait(&request,&status);... /* Now use the data in buffer */Clearly, programmers working directly with message-passing routines can themselves institutethe overlap of computation and communication. More important, PETSc provides this opportunitywithin many of the higher-level operations mentioned in the preceding section for encapsulatingcomplicated communication patterns. This makes all the optimizations in the communication trans-parent to the user.4.3 Precomputing Communication PatternsIn many aspects of the numerical solution of PDEs (for example, iterative solution of linear systemsand explicit timestepping), the same communication is repeated many times on essentially the samedata structures. If, each time the communication had to occur, one redetermined what sends andreceives had to be instituted (and just this determination requires its own communication), this9

process would be very ine�cient. Fortunately, it is possible to precompute exactly what messagesneed to be sent and received and the amount of data that will be transferred. In fact, MPI evenexplicitly supports precomputing through persistent send and receive objects.If one is aware that a particular receive is to occur multiple times, in MPI one can initialize theset of receives by callingMPI_Request request;MPI_Recv_init(buffer,count,MPI_DOUBLE,proc,tag,comm,&request);In this case, we are receiving double-precision data of length count; buffer is the initial addressof the receive bu�er; proc is the rank of the receive processor; tag is the message tag; comm is thecommunicator; and request is the communication request. Then every time the receive is required,one can simply callMPI_Start(&request);/* Do other computations */MPI_Wait(&request,&status);/* Use the data in the buffer */There is analogous syntax for repeated sends. In addition, MPI directly supports the use of persistentcommunication on a series of related messages.As discussed in Section 2.2, it is often not known a priori by a receiver who is sending it data.Thus a set-up phase must be performed to even know what communication needs to take place. Forsimilar, repeated communications, a clean mechanism is required to manage this set-up phase, sothe same set-up need not be repeated. This is discussed in detail for vector scatters in Section 5.1.It is natural to encapsulate information for potentially repeated communication patterns in theobjects that de�ne higher-level operations. As will be demonstrated in the following sections, we doexactly this for operations such as matrix-vector products and vector scatters/gathers.4.4 Programmer Management of CommunicationCertain parallel programming paradigms (for example, HPF) attempt to conceal completely fromthe user knowledge of when communication takes place. Although this approach to make parallelprogramming \easier" is very appealing, it can have serious e�ects on both e�ciency and the user'sknowledge of what is actually occurring in an application code. In PETSc, the user can explicitlyinitiate communication by calling speci�c PETSc routines. For example, to perform a parallel vectorscatter/gather (discussed in Section 5.1), the user calls the routinesVecScatterBegin(Vec x,Vec y,InsertMode im,ScatterMode sm,VecScatter scattercontext);VecScatterEnd(Vec x,Vec y,InsertMode im,ScatterMode sm,VecScatter scattercontext);Thus, within an application code the user can dictate the time that communication takes placewith respect to computations. In addition, the user often can arrange the overlap of communicationand computation by placing code unrelated to the message passing between calls to multiphasedroutines such as the vector scatters/gathers. This situation is analogous to the use of prefetching forhierarchical memory.4.5 Working E�ciently with Parallel Objects without Regard for Details of DataLocationWhen assembling a distributed object that requires a large amount of user-provided data (for exam-ple, a vector or matrix), one needs an e�cient mechanism for transferring data from the application10

code to its correct location in the library data structures. This mechanism must be easy to use;otherwise, the application programmer will be tempted simply to bypass the library and assemblethe data structures manually.Within PETSc we allow the user to insert data into global PETSc objects without regard for theparticular processor on which the data is destined ultimately to be stored. To require the user togenerate all data on the \owner" processor is simply too much of a burden within most applicationsand is, in fact, unnecessary. Rather, PETSc internally retains (called stashing in PETSc) those valuesdestined for another processor until an explicit communication phase is initiated by the user (anexample of the concept of the application programmer determining when communication occurs,as discussed above). This topic is discussed in detail for vectors in Section 5.1 and for matrices inSection 5.2. This same stashing technique is commonly used and, in fact, is vital for obtaining goodperformance in I/O systems, where it is referred to as write caching.4.6 Aggregation of Data for CommunicationThe overhead of initiating message transition is quite high relative to the cost of sending a seg-ment of data. For e�cient parallel programming, whenever possible one should pack relatively largeamounts of data for a single subsequent aggregate transition instead of sending several smaller mes-sages. PETSc incorporates this strategy in various communication phases throughout the library, forexample in the transfer of user-supplied nonlocal data within parallel matrix and vector assemblyroutines. What is important in the PETSc design is that it allows this type of optimization withoutrequiring an e�ort from the application programmer.5 PETSc Design of Fundamental ObjectsIn this section we discuss several of the fundamental PETSc objects and their implementations in thecontext of the six guiding principles introduced in Section 4. We brie
y summarize this information,which is given in full detail below.� Vectors are perhaps the simplest PETSc objects and are used, for example, to store the co-e�cients of the solutions of PDEs. The main parallel operations that we perform on vectorsare{ vector assembly, which (1) allows the user to insert vector entries without regard to theirprocessor ownership, and (2) aggregates the values until the user directs that communi-cation can begin; and{ vector scatters/gathers, which (1) allow overlap of the communication and computation,(2) reuse precomputed communication patterns, and (3) conceal all communicationwithinthe context of the higher-level abstraction of a scatter/gather.� Matrices, another class of fundamental PETSc data objects, represent linear operators. Often,matrices are obtained as Jacobians of an underlying nonlinear algebraic system arising fromthe discretization of a PDE. We discuss{ matrix assembly, which is similar to the vector assembly mentioned above; and{ sparse matrix-vector products, which demonstrate (1) the overlap of communication andcomputation by dividing the calculation into sections that are purely local and thatrequire o�-processor data, (2) precomputation of a repeated communication pattern, and(3) management of communication within the context of a higher-level operation (thematrix-vector product). 11

� We discuss the e�cient parallel computation of numerical Jacobians using coloring and �nitedi�erences. This topic demonstrates (1) the use of aggregation to reduce the amount of dis-tinct communications required, (2) precomputation of communication patterns (including thecoloring), and (3) the encapsulation of the entire process within an abstract PETSc operation.� Finally, we discuss the linear and nonlinear solvers. In this section we demonstrate how allcommunication required during the solution process is managed directly in the context of ahigher-level \solver" object.The remainder of this section discusses these operations in detail.5.1 VectorsIn the numerical solution of PDEs, a vector may often be thought of as a set of coe�cients repre-senting a function on a grid. A vector may also be thought of as a set of elements of RN , the usualEuclidean vector space. It is, however, too limiting to think of a vector as merely a one-dimensionalarray of
oating-point numbers in memory, since the components of a vector in a parallel machinewill generally not be stored in contiguous memory locations.In PETSc one can create a parallel vector with the commandVecCreateMPI(MPI_Comm comm,int nlocal,int nglobal,Vec *vector);As mentioned in Section 3, all processors in the communicator comm must call this routine, becausevector creation is an aggregate operation. The arguments nglobal and nlocal indicate, respectively,the total size of the vector and the number of elements to be represented locally on a particular pro-cessor. Either one, but not both, of the arguments nglobal and nlocal may be set to PETSC DECIDEto allow PETSc to determine the value. Upon this call, PETSc allocates memory to store the vectorentries and sets up any data structures required for manipulating the vector.Vector AssemblyAlthough the components of PETSc vectors are ultimately distributed among the various processors,it is highly desirable to allow users to assemble the vector components easily, without regard to theelements' �nal storage locations. That is, we would like to separate completely the vector data storageformats from the application codes. This capability simpli�es the application codes and allows librarywriters to provide highly tuned data structures without imposing a burden on users. This facet ofdesign is an example of data encapsulation, which is a very basic requirement for
exible libraries.To illustrate the parallel vector assembly process, we consider three cases of constructing theright-hand side of a linear system: by the �nite di�erence method, by the �nite element method,and by a special case for a grid-based nonlinear system arising from a �nite di�erence discretizationof a nonlinear PDE. In all cases, the resulting parallel vector is distributed among the processors,so that each vector component is owned by exactly one processor.Case 1: Simple �nite di�erence discretization in one dimension. The user creates a parallel vectorand partitions it among the processors by calling VecCreateMPI(), as discussed above. To evaluatethe vector entries, one can use a routine such as the following:Vec F; /* global vector */int istart, iend, i, N;double f;...VecCreateMPI(comm,PETSC_DECIDE,N,&F);VecGetOwnershipRange(F,&istart,&iend);/* Loop over local entries, inserting vector elements */for (i=istart; i<iend; i++) { 12

/* Assign f to be some function of the grid node */VecSetValues(F,1,&i,&f,INSERTVALUES);}/* Complete the vector assembly process */VecAssemblyBegin(F);VecAssemblyEnd(F);In this simple case each processor generates contributions only for its local part of the vector, F,and inserts these values one at a time with VecSetValues(); no parallel communication is required.In this example, the routines VecAssemblyBegin() and VecAssemblyEnd() do essentially nothingexcept verify that the user has completed inserting entries into the vector on all processors. However,in most serious applications the situation is not this simple, as demonstrated by Case 2.Case 2: Finite element discretization of the right-hand side of a PDE. The vector is calculatedby the integrals Fi = Zsupp(�) f(x)�(x)dx;where x can be one-, two-, or three-dimensional, and supp(�) denotes the support of �. In most�nite element codes these integrals are calculated numerically, element by element. Thus, certainvector components, Fi, receive contributions from more than one processor.We demonstrate this situation with an example in two dimensions using piecewise linear �niteelements. Assume that we have generated a parallel vector, F, and in addition have distributed the�nite elements (in this case triangles) among the processors. That is, each processor has a list of itslocal elements (triangles) and, for simplicity, the locations of the element nodes. For demonstrationpurposes the data structures representing the grid in the following code fragment are very simpleand are not necessarily the best choices for an actual code.Vec F; /* global vector */int gidx[3]; /* work array of vector indices */double f[3]; /* work array of vector contributions */int Nt, *tri, i;double *X, *Y, x0, y0, x1, y1, x2, y2;/* Loop over the local elements */for (i=0; i<Nt; i++) {/* Load the vertices of the element into local variables */x0 = X[3*i]; y0 = Y[3*i];x1 = X[3*i+1]; y1 = Y[3*i+1];x2 = X[3*i+2]; y2 = Y[3*i+2];/* Compute the local element vector in a work array, f,with an application-specific routine */CalculateElementIntegral(n,x0,x1,x2,y0,y1,y2,f);/* Load global indices for the nodes of the element into gidx */gidx[0] = tri[3*i]; gidx[1] = tri[3*i+1]; gidx[2] = tri[3*i+1];/* Add the local vector contribution, f, into the global vector,F, in the rows indicated by gidx */VecSetValues(F,3,gidx,f,ADD_VALUES);}/* Complete the vector assembly process */VecAssemblyBegin(F);VecAssemblyEnd(F);Here we insert three elements into the parallel vector, F, with each call to VecSetValues(). Gen-erally, it is desirable to set multiple values simultaneously; otherwise, the overhead for function callsincreases. This is an example of aggregation. In most true applications, aggregating the insertions isnatural and easy.In this example, as for most problems discretized with parallel �nite elements, some contributionsto the vector components are generated by a di�erent processor from their owner, because each13

�nite element is assigned a unique processor and each vector element similarly is assigned a uniqueprocessor. Note that these contributions are added to the appropriate global vector component, asindicated by the
ag ADD VALUES within VecSetValues(). The vector assembly routines performthe required message passing to move the values to their correct locations. As discussed below,separating the assembly process into two stages, VecAssemblyBegin() and VecAssemblyEnd(), iscritical for allowing application programmers to overlap communication and computation. Althoughthe procedure was not done in this example, a careful user will attempt to generate the majorityof the vector entries on the correct processor. (Note that there are tricks for reducing the cost ofintegral evaluation that also may exploit locality.) This example indicates that trying to generate allvector entries on the correct processor can lead to a unnecessarily messy application code, becausecertain �nite elements would have to be dealt with several times on multiple processors.Application programmers can, in fact, manage such message passing themselves. However, thistask should be done only by experienced parallel programmers who wish to develop a custom imple-mentation that optimizes performance for a particular problem. Since most users have neither thetime nor the experience to �nely tune their assembly routines, their special-purpose codes generallywould not perform as e�ciently as well-written library routines.Since the application code is free to insert components into a vector from any processor, regardlessof their ultimate storage location, there must be a mechanism to store the values locally until theyare transferred to the processor that owns them. In PETSc, these values are stored in a stash untilthey are transferred to the correct processor. The stash can be implemented in many ways; the onetricky point is correctly handling values that are inserted multiple times for the same component.Our current implementation is fairly naive; we simply retain an array of values and their indices. Asimple optimization might be to sort the list by indices; more sophisticated implementations mightuse a hash table.The �nal movement of the stashed values to their proper home processor is done in several stages:� By making calls to MPI Allreduce(), each processor determines the maximum size deliveryto expect, as well as a count of the number of deliveries.� Each processor allocates enough bu�ers to accommodate the arrival of all stashed values andposts corresponding nonblocking receives.� Each processor posts nonblocking sends of all its elements to be distributed.� Each processor waits for its receives and inserts the received values into the correct locationsas indicated by the received indices.� Finally, all processors wait for their nonblocking sends.The �rst three steps are done during the VecAssemblyBegin() stage and the last two during theVecAssemblyEnd() phase.The process of setting values into a vector demonstrates several of our six guiding principles:� Aggregation:{ The user aggregates several vector values into a single call to VecSetValues().{ The \o�-processor" values are aggregated in the stash before being moved en masse tothe correct processor.� Values are stashed locally until the user explicitly initiates communicationby calling VecAssemblyBegin()and VecAssemblyEnd().� The communication is managed within a vector object, not as a series of seemingly unrelatedcalls to MPI Send() and MPI Recv(). 14

Box-type stencil Star-type stencil

Proc 6

Proc 0 Proc 0Proc 1 Proc 1

Proc 6FIGURE 3. Ghost Points for Two Stencil Types on Processor Six� Communication and computation can be overlapped between the two assembly calls.� The user can insert values into the vector without speci�c regard for the processor on whichthe data will ultimately reside. But through the use of VecGetOwnershipRange(), the usercan ensure that most vector entries are generated on the \correct" processor, thus allowing ef-�ciency without requiring complicated application code including application-speci�c messagepassing.Distributed Arrays: Managing Ghost PointsNext, we consider a more complicated scenario, requiring vector communication before local functionevaluation can occur. In this example, we introduce another PETSc construct, the distributed array(called DA in PETSc). These data structures manage the communication required for ghost points,which are the bordering portions of the vector that are owned by neighboring processors. Figure 3illustrates the ghost points for processor six of a two-dimensional, regular, parallel grid. Each boxrepresents a processor; the ghost points for processor six's local part of a parallel array are shownin gray.Two types of distributed arrays can be created: one based on star-type stencils and one basedon box stencils. In both cases the ghost points are identical, the only di�erence being that withstar-type stencils certain ghost points are ignored, potentially decreasing substantially the numberof messages sent. In two dimensions a DA object of stencil type st and periodicity type pt can becreated with the commandDACreate2d(MPI_Comm comm,DAPeriodicType pt,DAStencilType st,int M,int N,int m,int n,int w,int s,DA *da);Here w indicates the number of degrees of freedom per node, and s is the stencil width. The argumentsM and N are the global dimensions of the array, while m and n indicate the partition of the arrayamong the processors. One should either use PETSC DECIDE for m and n or ensure that m*n equalsthe number of processors in the communicator. We employ two-dimensional distributed arrays inthe following example.Case 3: Consider the classic Bratu problem [ACM91],�4u � �eu = 0; 0 < x; y < 1;with boundary conditions u = 0 for x = 0; x = 1; y = 0; y = 1;15

which is discretized by �nite di�erences on a uniformm by m grid. The resulting nonlinear algebraicequation for an interior node is given by4ui;j � ui+1;j � ui�1;j � ui;j+1 � ui;j�1 � h2�eui;j = 0;where h = 1=(m�1) is the grid size. The PETSc code for evaluating this function (F(X)) in parallel,for use in a Newton-based method within SNES (the nonlinear solvers component), is given by thefollowing routine:/* SNES - nonlinear solver context *//* X - input vector *//* F - output vector (nonlinear function) *//* user - user-defined context with application-specific data */int EvaluateFunction(SNES snes,Vec X,Vec F,ApplicationCtx user){ DA da = user->da; /* distributed array */Vec localF = user->localF; /* local work vector */Vec localX = user->localX; /* local work vector */int i,j,row,xs,ys,xm,ym,Xs,Ys,Xm,Ym,m = user->m;double h,hh,ut,ub,ul,ur,u,uxx,uyy,*x,*f,lambda = user->param;h = 1.0 / (double)(m-1);hh = h*h;/* Transfer local portion (including ghost points) of globalvector, X, into a local work vector, localX */DAGlobalToLocalBegin(da,X,INSERTVALUES,localX);DAGlobalToLocalEnd(da,X,INSERTVALUES,localX);/* Get the indices of the lower left corner of the regionowned by this processor; get the corresponding indicesfor the region including ghost points. */DAGetCorners(da,&xs,&ys,0,&xm,&ym,0);DAGetGhostCorners(da,&Xs,&Ys,0,&Xm,&Ym,0);/* Directly access arrays (x and f) containing vector data */VecGetArray(localX,&x);VecGetArray(localF,&f);/* Loop over local region owned by processor, performingapplication operations */for (j=ys; j<ys+ym; j++) {for (i=xs; i<xs+xm; i++) {row = i - Xs + (j - Ys)*Xm;if (i == 0 || j == 0 || i == m-1 || j == m-1) {f[row] = x[row]; continue;}u = x[row]; ub = x[row - Xm]; ul = x[row - 1];ut = x[row + Xm]; ur = x[row + 1];uxx = (-ur + 2.0*u - ul); uyy = (-ut + 2.0*u - ub);f[row] = uxx + uyy - hh*lambda*exp(u);}}/* Place values in global vector */DALocalToGlobal(da,localF,INSERTVALUES,F);return 0;}The application portion of the routine (within the double for loop) appears exactly like a sequen-tial code, except that the loop indices range over only the local portion of the distributed array. Theindices of the lower left corner of the local portion of the array as well as the local array size are ob-tained with the commands DAGetCorners() and DAGetGhostCorners(). The �rst version excludesany ghost points, while the second version includes them and deals with the fact that subarraysalong boundaries of the problem domain have ghost points only on their interior edges, but not ontheir boundary edges. 16

To evaluate its local function, each processor requires its portion of the vector x as well as itsghost points. The calls to DAGlobalToLocalBegin() and DAGlobalToLocalEnd() handle all of thedetailed message passing to retrieve the needed ghost points from neighboring processors.The distributed arrays in PETSc demonstrate several of our guiding design principles:� Overlapping communication and computation.� Precomputing repeated communication patterns.� Managing the communication in the context of a PETSc object, in this case the DA.� Allowing the user full control of the time that communicationoccurs, via calls to DAGlobalToLocalBegin()and DAGlobalToLocalEnd().� Aggregation, in that from the user's point of view a single communication of all the ghost valuesoccurs, while internally a variety of message-passing activities (which have been organized fore�ciency) take place.Index Sets and Vector ScattersThe previous example illustrates a very special type of vector scatter and gather. PETSc also includesgeneral-purpose scatters and gathers, which we illustrate below with a contrived example.To facilitate vector scatters and gathers, PETSc employs the concept of an index set. An indexset, which is a generalization of a set of integer indices, is used to de�ne various operations on vectorsand matrices. The following command creates a sequential index set, is, based on a list of integersof length n in the array indices:ISCreateGeneral(MPI_Comm comm,int n,int *indices,IS *is);Another standard index set, which is de�ned by a starting point (first), a stride (step), and alength (n), can be created with the commandISCreateStride(MPI_Comm comm,int n,int first,int step,IS *is);We use strided index sets in the following vector scatter/gather example. In this case, one vectoris half the length of the other; we wish to gather every second element of the longer vector, x from,into the shorter, x to.VecScatter ctx;IS is_from, is_to;ISCreateStride(MPI_Comm comm,n/2,0,1,&is_to);ISCreateStride(MPI_Comm comm,n/2,0,2,&is_from);VecScatterCreate(x_from,is_from,x_to,is_to,&ctx);ISDestroy(is_to); ISDestroy(is_from);VecScatterBegin(x_from,x_to,INSERT_VALUES,SCATTER_ALL,ctx);/* Do other useful work */VecScatterEnd(x_from,x_to,INSERT_VALUES,SCATTER_ALL,ctx);The scatter context can be saved and reused whenever the same scatter is required.As discussed below, the vector scatters are performed in several stages to enable reusing com-munication patterns and overlapping communication and calculation. In the �rst scattering stage,which is initiated by calling VecScatterCreate(), the destination and source of each componentare determined. First, each processor decides the number of components it needs from the otherprocessors; it then calls MPI Allreduce()with these quantities to determine the number of requeststo expect and the maximum length of any request. Next, each processor posts a suitable number ofnonblocking receives with suitable bu�er sizes, followed by posts of all of its requests with nonblock-ing sends. Each processor then waits for its requests. As the requests arrive, the processor creates17

the VecScatter data structure that contains information regarding all the sends it must performduring the scatter. Once this has been completed, the processor creates an analogous data structurewith information about all of its expected receives and the storage location of the values. Finally,the processor waits for the posted nonblocking sends. Note that the construction of the VecScatterdata structure is modeled on the inspector/executor ideas in PARTI/Chaos [ASS93].We have decided to hide the creation of the VecScatter data structure in a single stage. To alloweven more overlap of application computation and communication with the nonblocking sends andreceives, one could break the context creation into two or three stages. In the interest of simplicitywe have not done so, believing that it is an overoptimization, since the scatter context is createdonly once and then used repeatedly.The actual vector scattering begins with the VecScatterBegin() stage, when the processor postsall of its nonblocking receives, followed by posting its nonblocking sends. The VecScatter containsthe required MPI communicator, all information regarding what must be posted, and locations tostore the MPI Request data structure.The VecScatterEnd() phase waits for the receives, inserts the arriving data into the correctvector locations, and waits for the posted sends. In our implementation, we do not use the MPIscatter construct to do the scattering. Instead, we manually gather the data into a bu�er (hiddenin VecScatter) and send the bu�er with a persistent nonblocking send. Similarly, we receive thedata into a bu�er and then scatter the bu�er into the actual vector. We wrote the code this way tosupport a scatter-add operation, which MPI does not directly support.This implementation facilitates the overlap of calculation and communication by allowing theapplication code to perform work unrelated to the scatters while the messages are in transition (thatis, between the calls to VecScatterBegin() and VecScatterEnd()). However, we ignore severaladditional possibilities for overlap. For instance, the �nal wait-on-sends could constitute a separatestage at the scatter's conclusion. Such modi�cations could provide additional e�ciency, though at thecost of a steeper learning curve and more complicated application and library codes. We have triedto strike a healthy balance between the ability to achieve the important overlap of communicationand calculation with little added complexity.An observant reader may have noticed that since we keep MPI request objects as well as temporarybu�ers in the VecScatter, it may be used for only a single scatter at a time. To prevent programmingerrors resulting from accidental concurrent reuse, the scattering context contains a
ag that indicateswhether it is currently involved in a scatter.The vector scatter construction in PETSc demonstrates several of our six guiding principles:� Overlapping communication and computation.� Precomputing repeated communication patterns during the routine VecScatterCreate(),which are then reused for several scatters.� Managing the communication in the context of a PETSc object, in this case the VecScatter.� Allowing the user complete control of the time that communication takes place, via calls toVecScatterBegin() and VecScatterEnd().In a later section we discuss the use of the basic vector scatter to implement some of our parallelsparse matrix-vector products.5.2 MatricesPETSc provides a variety of matrix data structures and many of the matrix operations required forthe solution of PDEs. In this section we focus on two speci�c facets of our matrix implementation(matrix assembly and matrix-vector products) that re
ect our guiding design principles.18

Matrix AssemblyMatrix assembly is organized similarly to vector assembly, as demonstrated by the following routinefor forming a �nite element sti�ness matrix. The call to MatSetValues() adds a 3� 3 block to thesti�ness matrix. Again, as for the vector assembly, it is more e�cient to insert elements by blocks,rather than individually.Mat K; /* Global stiffness matrix */int Nt, *tri, i, gidx[3];double *X, *Y, x0, y0, x1, y1, x2, y2, k[9];/* Loop over local elements */for (i=0; i<Nt; i++) {/* Load the vertices of the element into local variables */x0 = X[3*i]; y0 = Y[3*i];x1 = X[3*i+1]; y1 = Y[3*i+1];x2 = X[3*i+2]; y2 = Y[3*i+2];/* Compute the element stiffness matrix with an application-specific routine that stores it in k */CalculateElementStiffness(x0,x1,x2,y0,y1,y2,k);/* Load global indices for nodes of the element into gidx */gidx[0] = tri[3*i]; gidx[1] = tri[3*i+1]; gidx[2] = tri[3*i+1];/* Add the local stiffness matrix, k, to the global stiffnessmatrix, K, in the rows and columns indicated by gidx */MatSetValues(K,3,gidx,3,gidx,k,ADD_VALUES);}MatAssemblyBegin(F,FLUSH_ASSEMBLY);MatAssemblyEnd(F,FLUSH_ASSEMBLY);Certain internal data structures (for instance, data structures needed for a matrix-vector product)must be created once during sparse matrix assembly, after all of the matrix elements have beeninserted. The second argument of MatAssemblyBegin() and MatAssemblyEnd() indicates whetherthe assembly is complete, FINAL ASSEMBLY, or only partial (so that values will be added/changedlater), FLUSH ASSEMBLY. Only after calling the FINAL ASSEMBLY variant of the assembly routines isthe parallel matrix ready for use. The FLUSH ASSEMBLY is to allow the local stashes to be unloadedto the correct processor, without setting up the rest of the data structures required to make thematrix ready for use.PETSc provides a variety of parallel matrix data structures that are distributed by rows, including(block) compressed sparse row, (block) diagonal, and dense formats. The matrix assembly processfor all of these implementations is analogous to that for vectors, discussed in Section 5.1. Speci�cally,stashing is employed to enable the application code to insert any components into a matrix, regardlessof their ultimate storage location. The assembly phase automatically handles the movement of theelements into their �nal locations. The matrix assembly design re
ects the same guiding principlesas the vector assembly.Matrix-Vector ProductsOne of the most computationally expensive operations within iterative methods for sparse systemsof linear equations is the matrix-vector product. We next describe the use of the vector scatters in-troduced above to compute the matrix-vector product for one of our simple matrix implementations.This section continues the discussion at the end of Section 2.2.The default sparse matrix representation supported in PETSc is the compressed row storageformat (also called the Yale sparse matrix format or AIJ storage). This format employs three arrays:the matrix nonzeros (ordered by rows), their respective column indices, and pointers to the beginningof each row. The internal data representation is compatible with standard Fortran 77 storage. InPETSc these three arrays, as well as other useful information, are encapsulated in the internal partof the Mat datatype. 19

In our implementation, parallel AIJ matrices are distributed by rows among the processors, sothat each processor owns a submatrix consisting of all of the nonzeros within its assigned rows. Eachprocessor's local matrix is divided into diagonal and o�-diagonal parts. For a square global matrix wede�ne each processor's diagonal portion to be its local (owned) rows and the corresponding columns(a square submatrix); each processor's o�-diagonal portion encompasses the remainder of the localmatrix (a rectangular submatrix). As described in the following paragraph, this subdivision enablesthe overlap of computation and communication during the matrix-vector products. We indicatebelow the pertinent parts of the parallel AIJ data structure for our discussion:typedef struct {Mat A; /* diagonal submatrix */Mat B; /* off-diagonal submatrix */Vec lvec; /* local vector to receive scattered elements */VecScatter Mvctx; /* scatter context for matrix-vector product */.... /* additional data */} Mat_MPIAIJ;After all elements have been inserted into a parallel matrix, we create the data structures needed forthe matrix-vector product within the MatEndAssembly() phase. These data structures are generallyformed a single time for a matrix; however, they must be recomputed when the nonzero structureof the matrix changes.Each processor �rst compresses its o�-diagonal submatrix, renumbering the column numbers fromone through nc, where nc denotes the number of nonzero columns in the entire o�-diagonal sub-matrix. Each processor also creates a mapping from the compressed to the actual column numbers(needed for such actions as printing a matrix) and forms a local vector of dimension nc that willbe used to receive scatters of nonlocal vector elements during the matrix-vector product. Then eachprocessor forms a vector scatter context with VecScatterCreate(), so that only the vector ele-ments needed by the o�-diagonal part of the local matrix will be scattered to that processor duringa matrix-vector product.After this setup phase, the matrix-vector product computations are then extremely simple, asindicated by the routine given below for computing y = A � x:int MatMult_MPIAIJ(Mat A,Vec x,Vec y){Mat_MPIAIJ *aij = (Mat_MPIAIJ *) A->data;VecScatterBegin(x,aij->lvec,INSERT_VALUES,SCATTER_ALL,aij->Mvctx);MatMult(aij->A,x,y);VecScatterEnd(x,aij->lvec,INSERT_VALUES,SCATTER_ALL,aij->Mvctx);MatMultAdd(aij->B,aij->lvec,y,y);return 0;}We initiate scattering with VecScatterBegin() and compute the local part of the matrix-vectorproduct, thus overlapping calculation and communication. We then complete the scattering withVecScatterEnd(). Finally, we perform the o�-diagonal part of the matrix-vector product.The matrix-vector product exempli�es several of the guiding principles:� Overlapping communication and computation.� Managing the computation in the context of a PETSc object, in this case a matrix.� Precomputing communication patterns inside the vector scatter.5.3 Jacobian Computation via Finite Di�erencesPETSc provides a variety of scalable nonlinear solvers. At the heart of these is a need to provide(approximate) Jacobian information. In the context of �nite element and �nite di�erence methods,20

these Jacobians are usually extremely large sparse matrices that for realistic applications are dif-�cult to compute analytically. PETSc provides the infrastructure to compute Jacobians via �nitedi�erences e�ciently and scalably. Since this is an important example of the use of our six guidingprinciples, we discuss it in detail.The Jacobian, J , of a function F (x) is a matrix whose columns are the derivatives of F withrespect to each of the components of x. Thus,columnj(J) = 5xjF � F (x+ dxj)� F (x)dxj ;where dxj represents a small perturbation to the jth component of x. Once F (x) has been evaluated,one can compute each column of the Jacobian at the cost of one function evaluation. In addition,one can determine the nonzero pattern of each column by locating the nonzeros generated duringthis computational process.Unfortunately, this approach is completely nonscalable because, if the Jacobian is n by n, thismethod requires n function evaluations and n2 checks to locate the nonzeros in the Jacobian. For-tunately, for the class of problems that PETSc tackles, both of these problems can be eliminated.Determining the nonzero pattern: For PDEs discretized on �nite element or �nite di�erencegrids, it is generally straightforward to determine the nonzero structure of the Jacobian matrices.The nonzero structure arises from the underlying coupling between nodes used on the grid (whichcorresponds to the stencil for �nite di�erence methods), and in general this is determined by cell ornode neighbors. Most important, it is determined locally and thus is easily parallelized.E�cient computation of the Jacobian entries: Consider the functionF (x0; x1; x2; x3; x4) = 0BBBB@ x0 + x1 � x0x1 + x243 � x2 + x0x3 + x0x4 + 2 � x1 1CCCCA :Its Jacobian is easily computed to be0BBBB@ 1 + x1 x01 2x41 31 12 1 1CCCCA :Note that columns 1, 2, and 3 share no common rows. Consequently, one could compute all threecolumns with a single function callcolumn1(J) + column2(J) + column3(J)�F (x+dx1)�F (x)dx1 + F (x+dx2)�F (x)dx2 + F (x+dx3)�F (x)dx3=21

0BBBBBB@ F0(x+dx1)�F0(x)dx1F1(x+dx1)�F1(x)dx1F2(x+dx2)�F2(x)dx2F3(x+dx3)�F3(x)dx3F4(x+dx1)�F4(x)dx1 1CCCCCCA�0BBBBBB@ F0(x+dx1+dx2+dx3)�F0(x)dx1F1(x+dx1+dx2+dx3)�F1(x)dx1F2(x+dx1+dx2+dx3)�F2(x)dx2F3(x+dx1+dx2+dx3)�F3(x)dx3F4(x+dx1+dx2+dx3)�F4(x)dx1 1CCCCCCA :Similarly, columns 0 and 4 may be computed simultaneously. From this example, one sees a verygeneral mechanism for computing sparse Jacobians e�ciently.First, one colors the columns of the sparse matrix so that no two columns of the same color sharea common row. Then, the number of function evaluations required to approximate the Jacobiandrops from n to the number of colors. In most applications the number of colors required can varybetween 4 and 50.The use of coloring to compute Jacobians e�ciently has been known for many years and is widelyused on sequential machines, for example in the library MINPACK [MSGH84]. We discuss brie
yhow e�cient Jacobian computation is performed in PETSc.� Compute the nonzero structure of the Jacobian; as indicated above, this is essentially a localcomputation.� Generate a coloring of the resulting matrix. This may be done in one of two ways:{ color the underlying grid directly (this again is essentially a local operation), or{ use a parallel graph coloring algorithm (for example, [JP93]), to color the parallel sparsematrix directly.� Determine all the local computation and the communication that will be required for eachcolor in the actual Jacobian approximation. This is an inspector step, and in PETSc it gen-erates a data structure called MatFDColoring. Note that the actual Jacobian calculations will(generally) require communication of the scaling factors dxj, since a column change on oneprocessor will (in general) a�ect rows on other processors (though usually only a few).A code fragment that demonstrates this process is given below.ISColoring iscoloring;MatFDColoring fdcoloring;Mat J;DAGetColoring2dBox(da,&iscoloring,J);MatFDColoringCreate(J,iscoloring,&fdcoloring);The PETSc data structure ISColoring contains the information about the column coloring, and theroutine DAGetColoring2dBox() is a PETSc utility routine that colors two-dimensional grids usinga nine-point stencil.The routine SNESDefaultComputeJacobianWithColoring() that actually computes the approx-imate Jacobian can be expressed in pseudo-code as follows:22

Loop over all colors {For each local column, j, of that color {Compute an appropriate dx[j] perturbation and add it to x}Evaluate the function at the new xCommunicate the required scaling factors dx[j]For each local column of that color {Loop over known nonzero rows {Scale Jacobian entry by appropriate dx[j]; insert in matrix}}}The data structure MatFDColoring contains all the precomputed information required in imple-menting this pseudo-code.The e�cient computation of Jacobians via coloring as implemented in PETSc exempli�es severalof our guiding principles:� Managing the computation in the context of a PETSc object, in this case a MatFDColoringobject.� Precomputing communication and computation patterns, required for e�ciently determiningnonzero rows and scalings.� Aggregating the computation, by updating all columns of the same color simultaneously.5.4 Linear and Nonlinear SolversWe next provide an overview of the techniques used in PETSc for coordinating various types ofalgorithms (e.g., linear, nonlinear, and timestepping solvers) by focusing on the the simplest case|linear solvers. We build these solvers on the foundation of the previously discussed matrix and vectordata structures.Most modern linear iterative solvers may be viewed as the combination of a preconditioner (simplestationary iterative solver) and a Krylov subspace accelerator. (Even multigrid methods may becategorized in this manner if we view the Richardson iteration as playing the role of a Krylovsubspace method.) Since its earliest days PETSc has provided uniform and simple access to avariety of parallel Krylov subspace accelerators. These methods are relatively easy to code (since theymerely require a matrix-vector product and several vector operations), and the data-structure-neutralimplementations within PETSc are independent of underlying matrix and vector data structures[SG96]. We emphasize that this data-structure-neutral approach exposes mathematical details in auniform fashion, without making unnecessary assumptions about the representation of mathematicalobjects. In particular, the parallelism within the Krylov subspace methods is handled completelywithin the vector and matrix modules of PETSc. Such organization is crucial in managing thecomplexity of the parallel software.In contrast to the Krylov subspace techniques, most preconditioner implementations must bedata-structure-dependent, so that each preconditioner must be explicitly coded for use with eachnew (parallel, sparse) matrix data structure. In addition, the source code and parallelism for matrix-based preconditioners are generally much more complicated than those for Krylov subspace methods.Thus, the numerical kernel of most preconditioners within PETSc is within the matrix module of thelibrary, where such actions as incomplete factorization, triangular solves, and extraction of matrixsubblocks occur.We coordinate the solvers by using a context data type (called SLES for linear solvers and SNESfor nonlinear solvers), to store all information about the solution process, including the right-handside, convergence tolerances, options, parameters, etc. All of the computations and communications23

related to a particular solution process are managed in the solver context variable. These solvers,as well as the lower levels of code on which they are built, of course also employ the previouslydiscussed software design principles.To demonstrate the easy-to-use interface that this approach enables, we consider a simple exampleof solving a linear system. We �rst create and assemble the matrix A and right-hand-side vector b;then we create a solver context, set some solver parameters, and �nally solve the system.Vec x, b;Mat A;SLES sles;MPI_Comm comm;...MatCreate(...,&A);/* ... Assemble the matrix ... */VecCreate(...,&b);/* ... Assemble the vector ... */SLESCreate(comm,&sles); /* Create a linear solver context */SLESSetFromOptions(sles); /* Set solver parameters at runtime */SLESSetOperators(sles,A,A,SAME_NONZERO_PATTERN);/* Set the matrix that defines the linear system and anoptionally different preconditioning matrix. The flagSAME_NONZERO_PATTERN indicates the matrix A will havethe same nonzero structure for several distinct linearsolves; this flag allows reuse of information duringsuccessive solves to reduce the computation requiredin constructing the preconditioner for the next linearsystem. */SLESSolve(sles,b,x); /* Solve the system */All communication required by the linear solver is handled internally within the SLES routines (andthe routines that they call) and uses the MPI communicator set in the call to SLESCreate(). Thiscommunication includes� passing matrix information during the preconditioner construction,� computing vector inner products and norms within Krylov subspace codes, and� performing vector scatters in parallel matrix-vector products.The advantage of this organization is that the communication is always intrinsically associated witha higher-level object or objects and the operations performed on them, rather than using simply ajumble of sends, receives, and other MPI calls for which it is di�cult to understand the connectionbetween a particular message-passing call and the actual mathematical operations on the data.Consequently, parallel application codes, including the linear, nonlinear, and timestepping solverswithin PETSc, are much easier to develop, maintain, and understand.Through its design, PETSc provides a uniform interface to all of its linear solvers. These solversinclude a variety of Krylov subspace accelerators such as� the conjugate gradient method,� GMRES,� CGS,� Bi-CG-stab, and� transpose-free QMR,and a growing family of preconditioners, such as� block Jacobi,� overlapping additive Schwarz, 24

� ILU(0) and ICC(0) (through an interface to BlockSolve95 [JP92]), and� ILU(k) (currently sequential only).There are three main parallel sparse matrix formats:� CSR (compressed sparse row),� block CSR, and� storage by block diagonals.PETSc provides two main approaches to solving nonlinear algebraic systems (in parallel): linesearch techniques and trust region methods. Both support the use of any of the linear solvers in atruncated Newton algorithm. Recently, we have added support for using backward Euler timestep-ping schemes. We plan to include additional higher order timestepping schemes in the future. Allthe solvers are introduced in the PETSc users manual [BGMS95].5.5 Object-Oriented Features of PETScThis article has touched on several object-oriented features of PETSc without providing a completeoverview of the object-oriented design. In this section we focus on how object-oriented techniquesare used to organize the overall software package.Object-oriented programming is often de�ned by the three complementary principles:� data encapsulation,� polymorphism, and� inheritance.Data encapsulation (also sometimes called data hiding) refers to writing objects (data structures)so that application code does not directly access the underlying data in the object. Rather, theapplication code can a�ect the data only by making subroutine calls that change the data. In C++,these routines are called member functions, and they are the only part of the code that can changedata that is \private" to an object.Polymorphism refers to techniques that allow one to call the same function from the applicationlevel of the code to perform a speci�c operation regardless of the underlying data structure usedinternally to store the data. An example of polymorphism in PETSc is the use of the routineMatMult() to perform a matrix-vector product regardless of the particular matrix and vector formatsbeing used. In C++, polymorphism is usually accomplished by using virtual functions.Inheritance is the process of de�ning new objects by either combining properties of several di�erenttypes of objects or adding properties to an object that is already de�ned.PETSc uses all three of the de�ning principles of object-oriented programming. PETSc uses strongdata encapsulation in both the vector and matrix data objects. Application access to the vector andmatrix data is obtained through function calls such as VecSetValues() and MatMult(). All of thePETSc operations are supported via polymorphism. The user need not call routines speci�c to aparticular data structure from the application code. Instead, the user calls a generic interface routinethat correctly calls the underlying data-speci�c routine. This process is handled in PETSc throughthe use of structures of function pointers, quite similar to the way virtual functions are handled inC++.Surprisingly, PETSc also uses inheritance in its design. All PETSc objects are derived from anabstract base object. From this fundamental object an abstract base object is de�ned for eachPETSc object; examples include the IS (index set) object, the Vec (vector) object, the Mat (matrix)object, and the PC (preconditioner) object. Each of these abstract base objects then has a variety ofinstantiations. For example, there are at least �ve di�erent matrix storage formats. No attempt ismade to use inheritance directly inside these instantiations. For example, the CSR and block CSRobjects do not share any common code. For speci�c details on how the inheritance is managed (e.g.,25

for vectors), one may refer to the �les petsc/include/phead.h and petsc/src/vec/vecimpl.h aswell as petsc/src/vec/impls/dvecimpl.h.Another level of inheritance has been incorporated in the newest component of PETSc, the GVec(Grid Vector) package. Grid vectors are vectors with additional information about an underlying gridand discretization. Since PETSc is coded in C, which does not provide direct support for inheritance,we manage inheritance by using techniques similar to those used for handling attributes in MPI.Thus, although PETSc is written in C, which is not an object-oriented programming language, itis still possible to take advantage of the three underlying principles of object-oriented programmingto manage the complexity of such a large package. Clearly, a software package similar in design toPETSc could be implemented in C++ with virtually a one-to-one mapping between the underlyingdata structures and routines in the two packages. We have chosen to develop PETSc in C to ensurecomplete portability across a wide range of machines, while C++ has continued to evolve over theyears.6 Sample Performance ResultsTo demonstrate the type of parallel performance one can expect using PETSc, we consider here athree-dimensional structured Euler simulation on a C-type grid using a �nite volume discretization.The case for which the following data was generated is transonic
ow over an ONERA M6 wing,a standard test case originally coded (for a serial computer) by David Whit�eld of MississippiState University in a Newton-iterative formulation with low-CFL, pseudo-transient continuationand explicit enforcement of boundary conditions [WT91]. As part of the conversion to PETSc, wehave replaced the explicit boundary conditions with a fully implicit variant [Tid95].The solution technique used for this problem is a Newton-Krylov approach with pseudo-transientcontinuation and adaptive advancement of the CFL number. Much of the approximate Jacobian ma-trix has block-band structure corresponding to the three-dimensional, seven-point stencil, with �vedegrees of freedom per node (three-dimensional momentum, internal energy, and density). The fullyimplicit boundary conditions spoil the strictly banded structure due to the C-type grid wrap-aroundof the mapped grid in the wake region. We use the PETSc matrix format for block, compressed,sparse rows (block CSR) to exploit this structure.We present timings on an IBM SP2 for the matrix-vector product, the entire linear solve, anda �xed number of iterations (29) of the nonlinear solve. The times for the matrix-vector productsand linear solves are for the entire solution process. Thus, for each matrix-vector product in thetable, the times are given for between 110 and 150 products, while the linear solve times are for 29complete linear solves. To put these numbers in perspective, we note that the peak performance ofone processor of the IBM SP2 is 264 M
ops, the LINPACK 100 benchmark produces 130 M
ops,and a sparse matrix-vector product that uses the standard compressed sparse row format (CSR)attains 27 M
ops.Tables 1.1 and 1.2 are for a �xed grid size of 98 � 18 � 18, so that the Jacobian matrix has adimension of 158,760 with 4,636,200 nonzero elements. The linear Newton systems are solved usingGMRES(30) and block Jacobi preconditioning, where each processor has one block that is solvedwith ILU(0). The speedup over two processors is given in parentheses in the tables. Note that theentire problem does not �t on one processor when explicitly forming the Jacobian matrix and usingILU preconditioning.We next consider similar runs for the same problem on a re�ned mesh of size 194�34�34, whichproduces a system that is roughly eight times as large as the previous one, having 1,121,320 rows and35,742,760 nonzeros. These results are given in Tables 1.3 and 1.4, where the speedup over sixteenprocessors for each phase is given in parentheses.For the �nal problem having 1,121,320 unknowns, the computation rate on sixteen processors forthe matrix-vector product was 1,281 M
ops, while the complete linear solve achieved 1,011 M
ops.26

TABLE 1. Performance on Small Grid Problem: Computation Time (Seconds)Number of Mat-Vec Products Linear Solves Nonlinear SolveProcessors Time Speedup Time Speedup Time Speedup2 5.67 � 17.46 � 73.63 �4 3.03 (1.9) 9.02 (1.9) 39.22 (1.9)8 1.65 (3.4) 4.74 (3.7) 21.17 (3.5)16 0.92 (6.2) 2.62 (6.7) 11.50 (6.4)32 0.58 (9.8) 1.62 (10.8) 6.70 (11.0)64 0.40 (14.2) 1.14 (15.3) 4.87 (15.1)TABLE 2. Performance on Small Grid Problem: Computation Rate (M
ops)Number of Mat-Vec Products Linear SolvesProcessors M
ops Speedup M
ops Speedup2 179 � 147 �4 337 (1.9) 286 (2.0)8 620 (3.5) 540 (3.7)16 1137 (6.4) 994 (6.8)32 2038 (11.4) 1785 (12.1)64 3003 (16.8) 2546 (17.3)TABLE 3. Performance on Large Grid Problem: Computation Time (Seconds)Number of Mat-Vec Products Linear Solves Nonlinear SolveProcessors Time Speedup Time Speedup Time Speedup16 6.38 � 20.04 � 83.08 �32 3.29 (1.9) 9.38 (2.1) 42.15 (2.0)64 1.94 (3.3) 5.34 (3.8) 25.44 (3.3)TABLE 4. Performance on Large Grid Problem: Computation Rate (M
ops)Number of Mat-Vec Products Linear SolvesProcessors M
ops Speedup M
ops Speedup16 1281 � 1011 �32 2483 (1.9) 2154 (2.1)64 4217 (3.3) 3744 (3.7)27

On sixty-four processors the matrix-vector product ran at 4,217 M
ops, while the complete linearsolve achieved 3,744M
ops. Note that for this problem we solved a single linear system in .18 secondson sixty-four processors using a general-purpose object-oriented numerical library.For representative parallel computation rates for a similar problem, we consider use of the blocktridiagonal (BT) method in a three-dimensional Navier-Stokes simulation within category two of theNAS Parallel Benchmarks (NPB 2) [NAS96]. This method solves three sets of uncoupled systems ofequations, each of which is block tridiagonal with 5� 5 blocks. For a problem size of 1023 (which iscomparable to our large grid problem mentioned above), the BT code achieves 924 M
ops on sixteenprocessors of an IBM SP2; the sixty-four processor case achieves 3,487 M
ops. While the numericalmethods used in this benchmark di�er from those employed in our Euler code, this comparison doesillustrate that the PETSc libraries achieve computation rates in line with those of similar sparseapplications.7 ConclusionWe have outlined six of the guiding principles that are used to e�ciently manage the communicationand computation in a parallel, large-scale, numerical object-oriented software library. These tech-niques are appropriate for distributed as well as NUMA-based shared-memory computers. In fact,the underlying PETSc libraries can deliver high performance on all modern scalable machines. Theguiding principles are appropriate for all scalable computers, not merely those requiring message-passing programming.We have shown how it is possible to organize a library around two con
icting goals|ease of useand high e�ciency|while maintaining a good balance between the two and allowing users to movealong the spectrum in either direction depending on their needs.The complete PETSc distribution is freely available via our home page, http://www.mcs.anl.gov/-petsc/petsc.html.Acknowledgments: The work of the �rst author was supported by the Applications TechnologyResearch Division subprogram of the O�ce of Computational and Technology Research, U.S. De-partment of Energy, under Contract W-31-109-Eng-38. The work of the third author was supportedby the National Science Foundation under ECS-9527169, through the Old Dominion UniversityResearch Foundation. The second and fourth authors were supported by the Mathematical, In-formation, and Computational Sciences Division subprogram of the O�ce of Computational andTechnology Research, U.S. Department of Energy, under Contract W-31-109-Eng-38.8 References[ACM91] Brett M. Averick, Richard G. Carter, and Jorge J. Mor�e. The MINPACK-2 test problemcollection. Technical Report ANL/MCS-TM-150, Argonne National Laboratory, 1991.[ASS93] Gagan Agrawal, Alan Sussman, and Joel Saltz. Compiler and runtime support forunstructured and block structured problems. In Proceedings of Supercomputing '93,pages 578{587, 1993.[BDV94] Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environment forMPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium '94, pages379{386. University of Toronto, 1994.[BGMS95] Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith. PETSc 2.0users manual. Technical Report ANL-95/11, Argonne National Laboratory, November1995. 28

[BGMS96] Satish Balay, William Gropp, Lois Curfman McInnes, and Barry Smith. PETSc homepage. http://www.mcs.anl.gov/petsc/petsc.html, December 1996.[BL96] A. M. Bruaset and H. P. Langtangen. A Comprehensive set of Tools for Solving PartialDi�erential Equations: Di�pack. Birkhauser, 1996.[GLDS96a] William Gropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. A high-performace,portable implementation of the MPI message passing interface standard. Parallel Com-puting, 22:789{828, 1996.[GLDS96b] WilliamGropp, Ewing Lusk, Nathan Doss, and Anthony Skjellum. MPICH home page.http://www.mcs.anl.gov/mpi/mpich/index.html, December 1996.[GLS94] William Gropp, Ewing Lusk, and Anthony Skjellum. Using MPI: Portable ParallelProgramming with the Message Passing Interface. MIT Press, 1994.[HJ88] R. W. Hockney and C. R. Jesshope. Parallel Computers 2. Adam Hilger, 1988.[HST95] Scott A. Hutchinson, John N. Shadid, and Ray S. Tuminaro. Aztec user's guide version1.1. Technical Report SAND95/1559, Sandia National Laboratories, October 1995.[JP92] Mark T. Jones and Paul E. Plassmann. BlockSolve v1.1: Scalable library software forthe parallel solution of sparse linear systems. Technical Report ANL-92/46, ArgonneNational Laboratory, 1992.[JP93] Mark T. Jones and Paul E. Plassmann. A parallel graph coloring heuristic. SIAM J.Sci. Comput., 14(3):654{669, 1993.[MPI94] MPI: A message-passing interface standard. International J. Supercomputing Applica-tions, 8(3/4), 1994.[MSGH84] Jorge J. Mor�e, Danny C. Sorenson, Burton S. Garbow, and Kenneth E. Hillstrom.The MINPACK project. In Wayne R. Cowell, editor, Sources and Development ofMathematical Software, pages 88{111, 1984.[NAS96] NAS Parallel Benchmarks home page. http://www.nas.nasa.gov/NAS/NPB/-index.html, December 1996.[RCH+96] J. V. W. Reynders, J. C. Cummings, P. J. Hinker, M. Tholburn, M. Srikant S. Banerjee,S. Karmesin, S. Atlas, K. Keahey, and W. F. Humphrey. POOMA: A FrameWork forScienti�c Computing Applications on Parallel Architectures, chapter 14. 1996.[SG96] Barry F. Smith and William D. Gropp. The design of data-structure-neutral librariesfor the iterative solution of sparse linear systems. Scienti�c Programming, 5:329{336,1996.[SOHL+95] Marc Snir, Steve Otto, Steven Huss-Lederman, DavidWalker, and Jack Dongarra. MPI:The Complete Reference. MIT Press, 1995.[Thi93] Thinking Machines Corporation. Users Manual for CM-Fortran. Thinking MachinesCorporation, 1993.[Tid95] M. D. Tidriri. Krylov methods for compressible
ows. Technical Report 95-48, ICASE,June 1995.[WT91] D. Whit�eld and L. Taylor. Discretized Newton-relaxation solution of high resolution
ux-di�erence split schemes. In Proceedings of the AIAA Tenth Computational FluidDynamics Conference, pages 134{145, 1991.29

