
The PVM Concurrent Computing System� Evolution�

Experiences� and Trends �

V� S� Sunderam
Department of Mathematics and Computer Science

Emory University� Atlanta� GA ������ USA

G� A� Geist
Mathematical Sciences Section
Oak Ridge National Laboratory
Oak Ridge� TN ������ USA

J� Dongarra � R� Manchek
Computer Science Department

University of Tennessee� Knoxville� TN ��		
� USA

Abstract

The PVM system� a software framework for heterogeneous concurrent computing
in networked environments� has evolved in the past several years into a viable technol�
ogy for distributed and parallel processing in a variety of disciplines� PVM supports
a straightforward but functionally complete message passing model� and is capable of
harnessing the combined resources of typically heterogeneous networked computing plat�
forms to deliver high levels of performance and functionality� In this paper� we describe
the architecture of PVM system� and discuss its computing model� the programming
interface it supports� auxiliary facilities for process groups and MPP support� and some
of the internal implementation techniques employed� Performance issues� dealing pri�
marily with communication overheads� are analyzed� and recent �ndings as well as
experimental enhancements to are presented� In order to demonstrate the viability of
PVM for large scale scienti�c supercomputing� the paper includes representative case
studies in materials science� environmental science� and climate modeling� We conclude
with a discussion of related projects and future directions� and comment on near and
long�term potential for network computing with the PVM system�

�Research supported by the Applied Mathematical Sciences program� O�ce of Basic Energy Sciences�

U� S� Department of Energy� under Grant No� DE�FG�����ER������ and contract DE�AC���	
OR��
��

with Martin Marietta Energy Systems� Inc�� and the National Science Foundation� under Award Nos� CCR�

���	�	� and CCR�		�����

�



� Introduction

The past several years has witnessed an ever�increasing acceptance and adoption of paral�
lel processing� both for high�performance scienti�c computing as well as for more �general
purpose� applications� Furthermore� the message passing model appears to be gaining
predominance as the paradigm of choice� from the perspective of number and variety of
multiprocessors �especially massively parallel processors�� and also in terms of applications�
languages� and software systems for its support� This paper concerns one such message
passing system 	 PVM �Parallel Virtual Machine�� that is a software infrastructure that
emulates a generalized distributed memory multiprocessor in heterogeneous networked envi�
ronments� Such an approach� which obviates the need to possess a hardware multiprocessor�
has proven to be a viable and cost�e
ective technology for concurrent computing in many
application domains� Owing to its ubiquitous nature 	 a virtual parallel machine may be
constructed using PVM with any set of machines one has access to 	 and also due to its
simple but complete programming interface� the PVM system has gained widespread accep�
tance in the high�performance scienti�c computing community� In this paper� we present
the rationale and motivations for this project� the model supported� important design de�
cisions and performance considerations� and case studies in the use of PVM for scienti�c
supercomputing�

��� Heterogeneous Network Computing

Heterogeneous� network�base� concurrent computing refers to an evolving methodology for
general purpose concurrent computing where

� The hardware platform consists of a collection of multifaceted computer systems of
varying architectures� interconnected by one or more network types� A special case
�albeit the most common at present� is a collection of similar or identical workstations
on a single local area network� although a more speci�c term for such environments
is �cluster��

� Applications are viewed as comprising several sub�algorithms� each of which is poten�
tially di
erent in terms of its most appropriate programming model� implementation
language� and resource requirements

Heterogeneous network computing refers to models� techniques and toolkits to match
heterogeneous environments on the one hand with complete applications� consisting of dif�
ferent subtasks� on the other� While explicit attention to the heterogeneous aspects and
�functionality exploitation� in such scenarios has only recently received formalized atten�
tion� the concept� in some form has been explored previously� e�g� ��� although usually with
a narrow focus or based on a specialized architecture� The PVM system was designed to re�
alize a more general and encompassing interpretation of heterogeneous computing� and had

�



a pragmatic bias aimed at providing a working system that could be used in existing envi�
ronments � PVM supports heterogeneous machines� applications� and networks� Research
is continuing towards the eventual goals of the project� namely to propose a heterogeneous
application development model and associated programming frameworks� to enable opti�
mal mapping between application subtasks and the best�suited machines� and to provide
adequate infrastructure for heterogeneous debugging� visualization� pro�ling and monitor�
ing� In the meantime however� current realizations of PVM� supporting basic heterogeneous
features and robust emulations of heterogeneous concurrent machines� have proven to be
valuable and e
ective for more traditional applications� especially in high�performance sci�
enti�c computing� The facilities that are currently available� as well as recent results and
ongoing work� are discussed in the following sections�

��� The Evolution of PVM

The PVM project started in the summer of ����� and has evolved through three ver�
sions of the software� the latter two of which have been publicly distributed� The origi�
nal version of the system �� was ambitious� in that it attempted to be heterogeneous in
terms of programming model as well 	 support for emulated shared memory� in addition
to message passing� was incorporated� The basic computing model� which has remained
semantically unchanged� views applications as consisting of components� each representing
a sub�algorithm� each component is an SPMD program� potentially manifested as multiple
instances� cooperating internally as well as with other component instances via the sup�
ported communication and synchronization mechanisms� The unit of concurrency in PVM
is a process� and dependencies in the process �ow graph are implemented by embedding ap�
propriate PVM primitives for process management and synchronization within control �ow
constructs of the host programming language� The implementation model� also unchanged
from the original version� uses the notion of a �host pool�� a collection of interconnected
computer systems that comprises the virtual machine� on which daemon processes execute
and cooperate to emulate a concurrent computing system� Applications request and receive
services from the daemons� the facilities supported essentially fall into the categories of
process management and virtual machine con�guration� message passing� synchronization�
and miscellaneous status checking and housekeeping tasks�

PVM is the mainstay of the Heterogeneous Network Computing research project� a
collaborative venture between Emory University� Oak Ridge National Laboratory� and the
University of Tennessee� In addition to the authors� Keith Moore� and Weicheng Jiang
of UT� and Adam Beguelin of CMU are co�investigators� This project is a basic research
e
ort aimed at advancing science� and is wholly funded by research appropriations from the
U�S� Department of Energy� the National Science Foundation� and the State of Tennessee�
However� owing to its experimental nature� the PVM project produces software that is
of utility to researchers in the scienti�c community and to others� This software is� and
has been distributed freely in the interest of advancement of science and is being used in

�



computational applications around the world�

��� Related Work

A number of projects based on the same principle� namely utilizing a collection of inter�
connected machines as a concurrent computing platform� have been developed and several
enjoy widespread adoption and following� While there is some commonality with PVM�
other similar systems o
er �sometimes radically� di
erent programming and implementa�
tion models� and present varied functionality and performance� The more widely adopted of
these systems are described in detail elsewhere in this volume� in this subsection� we mention
a few representative systems and comment on di
erences in functionality and performance�

Linda �� is a concurrent programming model based on the concept of a �tuple�space�� a
distributed shared memory abstraction via which cooperating processes communicate� P�
and �its derivative Parmacs� �� are libraries of macros and subroutines developed at Argonne
National Laboratory and GMD� for programming a variety of parallel machines� They
support both the shared�memory model �based on monitors� and the distributed�memory
model �using message�passing�� Express is a collection of tools� including a message passing
interface� for programming distributed memory multiprocessors� including network clusters
��� Various other systems with similar capabilities are also in existence� a reasonably
comprehensive listing may be found in ���

With the exception of Linda� whose programming model is not based on conventional
message passing� most other systems support very similar facilities� the core primitives being
system�speci�c variants of send and receive� PVM supports dynamic process and virtual
machine management unlike other systems where the process structure is statically de�ned�
The PVM message passing primitives are oriented towards heterogeneous operation� involv�
ing strongly typed constructs for bu
ering and transmission� some other systems provide
for untyped data transfer� Compared to other systems� the suite of interface primitives
supported by PVM is small� for example P� and Express provide global combining rou�
tines� and Parmacs supports process topologies� These omissions are deliberate to a certain
extent� the PVM philosophy is to support a core kernel of primitives above which auxiliary
layers may be added �e�g� a PICL �� port to PVM ����� while ensuring that facilities that
can only be provided at the system level are comprehensive and functionally complete�

In terms of performance� most message passing systems exhibit only marginal di
erences�
although systematic comparative studies have not been undertaken� In the context of PVM
and similar systems� performance is usually measured by ��� end�to�end communications
speeds delivered by the software system� and ��� overall execution times of various complete
applications as measured by elapsed wall clock times� Neither of these parametrizations is
very meaningful however� since in typical networked environments� a number of dynamically
varying external in�uences continually a
ect these measures� Given these quali�cations� and
the fact that network�based systems for the most part utilize the same underlying transport

�



mechanisms� performance variations tend to be both insigni�cant and inconsistent� In a
later section� we present experimental measurements of performance for the PVM system�
and propose strategies under investigation to enhance them�

� PVM Model and Features

��� PVM Computing Model

Under PVM� a user de�ned collection of serial� parallel� and vector computers emulates
a large distributed�memory computer� Throughout this report the term virtual machine

will be used to designate this logical distributed�memory computer� and host will be used
to designate one of the member computers� Multiple users can con�gure overlapping vir�
tual machines� and each user can execute several PVM applications simultaneously� PVM
supplies the functions to automatically start up tasks on the virtual machine and allows
the tasks to communicate and synchronize with each other� A task is de�ned as a unit
of computation in PVM analogous to a Unix process� It is often a Unix process� but not
necessarily so� Applications� which can be written in Fortran�� or C� can be parallelized
by using message�passing constructs common to most distributed�memory computers� By
sending and receiving messages� multiple tasks of an application can cooperate to solve a
problem in parallel� Figure � depicts the PVM computing model as well as an architectural
abstraction of the system�

The model assumes that any task can send a message to any other PVM task� and that
there is no limit to the size or number of such messages� The PVM communication model
provides asynchronous blocking send� asynchronous blocking receive� and non�blocking re�
ceive functions� In our terminology� a blocking send returns as soon as the send bu
er is
free for reuse regardless of the state of the receiver� A non�blocking receive immediately
returns with either the data or a �ag that the data has not arrived� while a blocking receive
returns only when the data is in the receive bu
er� In addition to these point�to�point
communication functions the model supports multicast to a set of tasks and broadcast to
a user de�ned group of tasks� The PVM model guarantees that message order is preserved
between any pair of communicating entities�

��� Core Features

PVM supplies routines that enable a user process to register�leave a collection of coop�
erating processes� routines to add and delete hosts from the virtual machine� to initiate
and terminate PVM tasks� to synchronize with and send signals to other PVM tasks� and
routines to obtain information about the virtual machine con�guration and active PVM
tasks� Synchronization may be achieved in one of several ways� e�g� by sending a Unix
signal to another task� or by using barriers� Another method noti�es a set of tasks of an

�



Cluster 1

Cluster 2

MPP

Bridge/
Router

Cluster 3

Vector SC

PVM:
Uniform
View of
Multiprogrammed
Virtual Machine

Input &

Partitioning

Comp 2Comp 1

Output &
Display

SPMD

Inter-component comm & sync
Inter-instance comm & sync

SPMD

(a) PVM Computation Model (b) PVM Architectural Overview

Figure �� PVM System Overview

event occurrence by sending them a message with a user�speci�ed tag that the application
can check for� The noti�cation events include the exiting of a task� the deletion �or failure�
of a host� and the addition of a host�

PVM provides routines for packing and sending messages between tasks� The core
communication routines include an asynchronous send to a single task� and a multicast
to a list of tasks� PVM transmits messages over the underlying network using the fastest
mechanism available e�g� either UDP� TCP on networks based on the Internet protocols�
or other high�speed interconnects available between the communicating processors� One
example of this third option is described in section ���� Messages can be received by
�ltering on source or message tag �both of which may be speci�ed as wildcards�� with either
blocking or non�blocking receive routines� A routine can be called to return information
about received messages such as the source� tag� and size of the data� Message bu
ers are
allocated dynamically� thereby permitting messages limited in size only by native machine
parameters� There are routines for creating and managing multiple send and receive bu
ers�
This feature allows the user to write PVM math libraries and graphical interfaces that can
be called inside other PVM applications without communication con�icts� The user can
switch context from one set of bu
ers �for example used by the application� to another set
of bu
ers �for example used inside a math library call��

�



��� Auxiliary Features

Dynamic process groups are layered above the core PVM routines� A process can belong
to multiple groups� and groups can change dynamically at any time during a computation�
Routines are provided for tasks to join and leave a named group� Group members are
uniquely numbered from zero to the number of group members minus one� If gaps appear
in this numbering due to tasks leaving the group� PVM attempts to �ll these gaps with
subsequently joining tasks� Tasks can also query for information about other group mem�
bers� Functions that logically deal with groups of tasks such as broadcast and barrier use
the user�s explicitly de�ned group names as arguments�

PVM version � is designed so that native multiprocessor calls can be compiled into the
source� This allows the fast message�passing of a particular system to be realized by the
PVM application� Messages between two nodes of a multiprocessor use its native message�
passing routines� while messages destined for an external host are routed via the user�s
PVM daemon on the multiprocessor� On shared�memory systems the data movement can
be implemented with a shared bu
er pool and lock primitives� The MPP subsystem of
PVM consists of a daemon that manages the allocation and deallocation of nodes on the
multiprocessor� This daemon is implemented in terms of PVM � core routines� The second
part of the MPP port is a specialized libpvm library for this architecture that contains the
fast routing calls between nodes of this host�

��� Implementation

The PVM system is composed of two parts� The �rst is a daemon� called pvmd� �sometimes
simply pvmd�� that executes on all the computers making up the virtual machine� Pvmd� is
designed so any user with a valid login can install this daemon on a machine� A user wishing
to use PVM �rst con�gures a virtual machine by specifying a host�pool list� the daemons
are started on each� and cooperate to emulate a virtual machine� The PVM application can
then be started from a shell command line prompt on any of these computers�

The second part of the system is a library of PVM interface routines �libpvm��a�� This
library contains user callable routines for message passing� spawning processes� coordinating
tasks� and modifying the virtual machine� Application programs must be linked with this
library to use PVM�

The PVM system components have been compiled and tested on the architectures shown
in table �� This table includes hosts ranging from ��� laptop computers to Cray C��s
and MPP computers� In addition several vendors are supplying and supporting optimized
versions of PVM for their multiprocessor systems including� Cray Research� IBM� Convex�
Intel� SGI� and DEC�

�



ARCH Machine Notes

AFX� Alliant FX��
ALPHA DEC Alpha DEC OSF��
BAL Sequent Balance DYNIX
BFLY BBN Butter�y TC�			
BSD
�� �	
������ Unix box BSDI
CM� Thinking Machines CM� Sun front�end
CM Thinking Machines CM
CNVX Convex C�series
CNVXN Convex C�series native mode
DGAV Data General Aviion
CRAY C��	� YMP� Cray�� UNICOS
CRAYSMP Cray S�MP
HP
		 HP��			 model 
		 HPUX
HPPA HP��			 PA�RISC
I��	 Intel iPSC���	 link �lrpc
IPSC� Intel iPSC�� 
�� host SysV
KSR� Kendall Square KSR�� OSF��
NEXT NeXT
PGON Intel Paragon link �lrpc
PMAX DECstation 
�		� �		 Ultrix
RS�K IBM�RS�			 AIX
RT IBM RT
SGI Silicon Graphics IRIS link �lsun
SUN
 Sun 
 SunOS
SUN� Sun �� SPARCstation
SYMM Sequent Symmetry
TITN Stardent Titan
UVAX DEC MicroVAX

Table �� Architectures tested with PVM ��

� Performance Considerations

PVM and similar systems normally operate in general purpose networked environments�
where neither the CPU�s of the individual machines nor the interconnection network is
dedicated� As a result� raw performance or speedup of a given application is hard to
measure� Even in a dedicated networked environment� with no external use� the above is
true since operating system activity� window and �lesystem overheads� and administrative
network tra�c can contribute to deviated measurements� If these factors are ignored�
network computing systems behave in a manner that is reasonably predictable ���� In such
a scenario� most of the focus is on communications overhead� CPU optimizations can be
approached independently using traditional methods� since parallelism granularity is at the
process level�

�



Network Message Length

Type � ��� ��� �K �K ��K ��K �M

Ethernet ��� ��� ��� ��� ��� ���� ���� ������

FDDI ��� ��� ��� ��� ��� ���� ���� �����

Table �� Data transfer times �milliseconds�

Operation No� of Procs

Type � � � �� ��

Barrier ��� ���� ���� ���� �����

Broadcast ��� ��� ���� ���� ����

Opt� Bcast ��� ��� ���� ���� ����

Table �� Global operation times �milliseconds�

��� Raw Communication Performance

Given the above factors� performance evaluation of PVM and similar systems normally
begins with an analysis of data transfer costs� The time required for processes to exchange
messages is dependent on several factors� including the host machines� network speeds� and
most predominantly� the message size� In Table � below� we show message passing times in
milliseconds for PVM� for varying message lengths and two di
erent network types� these
experiments were conducted on unloaded workstations rated at ����� MIPS�

Two important observations pertain to Table �� The �rst concerns latency� or the mini�
mal time required to send a zero�length message� Irrespective of network type� this measure
is of the order of a millisecond� and depends largely on the speed of the host machines� as
a signi�cant fraction of this overhead is incurred in within�host protocol processing� The
second factor is throughput� As the table shows� the Ethernet network could be driven
at near theoretical peak capacity for large messages� similar ratios are conjectured to be
possible for fast networks with increases in host speeds and protocol optimizations�

Apart from point�to�point data transfer� group communication facilities are also an
important measure of communications performance� Table � shows times in milliseconds
for barrier synchronization and broadcasting ��K messages� using the release version of
PVM that uses naive but robust algorithms� as yet untuned for optimality� Also shown
in Table � is an experimental multicast ��K messages� facility that exploits the broadcast
medium of networks such as Ethernet�

�



��� Improving Communications Performance

As shown in the previous section� communication throughput approaching the medium ca�
pacity can be achieved in PVM� provided large messages are transferred� This has also been
demonstrated in situations involving multiple� simultaneous message passing� i�e� a high
percentage of the aggregate bandwidth of the medium is utilizable by PVM application pro�
cesses� The factor that is di�cult to optimize however� is latency� implying poor e�ciency
and speedup when message exchanges are short and intermittent�

One approach that is under investigation is to enable PVM operation directly above the
data link layer �rather than the transport layer�� a feasible option when operating in a local
network environment� An experimental version of PVM that operates in this fashion has
been designed� and latency improvements of the order of ��� have been observed� Work
is in progress to integrate this into the release version of PVM� incorporating intelligence
to determine on a send�by�send basis when it is appropriate to utilize this data transfer
mechanism�

� Scienti�c Supercomputing

PVM is being increasingly adopted at numerous institutions worldwide for distributed sci�
enti�c computing� Many scienti�c� industrial� and medical applications are being deployed
under PVM in clustered workstation networks� An important motivation �for the use of
PVM and other cluster computing systems� is price performance 	 generally� clusters are
about �� times as cost�e
ective as supercomputers for a given performance capability� for
several classes of applications� Other motivations for the increasing use of PVM include
a high degree of portability and a straightforward� robust interface that is well suited for
scienti�c application development�

Three computational grand challenges being addressed by ORNL as well as several
other applications important to DOE�s mission have been converted to PVM� The grand
challenges are in groundwater transport to assist in waste site clean up� �rst principles
materials calculations to assist in the design of new alloys and ceramics� and global climate
modeling to predict the e
ects of things such as ozone depletion� and global warming� In
the next sections we brie�y describe these three applications and the e
ort involved in
converting them to PVM�

��� Groundwater

ORNL is part of a consortium of groundwater researchers whose goal is to develop state of
the art parallel models for high performance parallel computers� These computer models
will enable researchers to model �ow with higher resolution and greater accuracy than

��



previously possible� As a �rst step researchers at ORNL have developed a parallel ��D
�nite element code called PFEM that models water �ow through saturated�unsaturated
media� PFEM solves the system of equations

F
�h

�t
� r � �K

s
K

r
�rh�rz� � q�

where h is the pressure head� t is time� Ks is the saturated hydraulic conductivity tensor�
K

r
is the relative hydraulic conductivity or relative permeability� z is the potential head� q

is the source�sink and F is the water capacity �F � d��dh� with � the moisture content�
after neglecting the compressibility of the water and of the media�

PFEM was parallelized by partitioning the physical domain into p pieces and statically
assigning one subdomain to each of p tasks� The present version uses only static load�
balancing and relies on the user to de�ne the partitioning� but other consortium members
are working on ways to automate these operations� At each timestep� each task solves
the above equation for its subdomain and then exchanges its boundary region with its
neighboring regions� Originally developed on an Intel iPSC���� multiprocessor� a PVM
version of PFEMwas straightforward to create requiring an undergraduate student less than
� weeks to complete� Presently� the PVM version of PFEM has been delivered to members
of the groundwater consortium for validation testing using networks of workstations while
they await the availability of parallel supercomputers� No performance tests had been done
at the time of this writing�

��� Materials

ORNL material scientists are developing algorithms for studying the physical properties
of complex substitutionally disordered materials� A few important examples of physical
systems and situations in which substitutional disorder plays a critical role in determin�
ing material properties include� high�strength alloys� high�temperature superconductors�
magnetic phase transitions� and metal�insulator transitions� One of the algorithms being
developed is an implementation of the Korringa� Kohn and Rostoker coherent potential ap�
proximation �KKR�CPA� method for calculating the electronic properties� energetics and
other ground state properties of substitutionally disordered alloys� The KKR�CPA method
extends the usual implementation of density functional theory to substitutionally disordered
materials� In this sense it is a completely �rst principles theory of the properties of substi�
tutionally disordered materials requiring as input only the atomic numbers of the species
making up the solid�

Starting with the original ������ line serial KKR�CPA code� it required about three
months to produce a PVM version of the code� After pro�ling the code and studying
the potential sites for coarse�grain parallelism� a master�slave paradigm was chosen for
implementation� The master task performs all the I�O and coordinates all the slaves� The
slave tasks perform the majority of the computational work� This split reduced the amount

��



of memory any one task required and also allowed the master task to do dynamic load
balancing� Several megabytes of data is transferred between master and slaves� but no data
is shared between slaves� Moreover the data transfers are organized as a few large messages
rather than many small ones to reduce message latency overhead�

Using PVM the KKR�CPA code is able to achieve over ��� M�ops utilizing a network of
ten IBM RS����� �� model ����s � � model ����s� workstations� estimated to be about ���
of the maximum achievable for this code� Given this capability� the KKR�CPA application
is being used as a research code to solve important materials science problems� Since
its development the KKR�CPA code has been used to compare the electronic structure
of two high temperature superconductors� Ba�Bi��Pb���O� and �Ba��K���BiO�� to explain
anomalous experimental results from a high strength alloy� NiAl� and to study the e
ect
of magnetic multilayers in CrV and CrMo alloys for their possible use in magnetic storage
devices�

The PVM KKR�CPA code has also been used to test concepts in distributed computing�
For example� with help from Cray Research the KKR�CPA code was run on a network of
C�� and YMP multiprocessors� Using �� processors scattered across several sites� the Cray�
based PVM was able to achieve an average aggregate performance of over � G�ops while
calculating superconductor properties� In a test of the portability of PVM� the KKR�CPA
code was run across a virtual machine composed of two Intel Paragons� a CM��� an Intel
i���� and IBM workstations� These hosts are geographically distributed at several sites� In
this test the master task ran on one of the IBM workstations and slave tasks ran on nodes of
the various MPP hosts� The performance of this test was consistent with the small number
of nodes used on each host�

��� Climate

A collaboration of researchers from ORNL� Argonne National Lab� and the National Center
for Atmospheric Research �NCAR� was formed to address atmospheric modeling� Their �rst
task has been to develop parallel algorithms and implement the recently developed version
of the NCAR Community Climate Model �CCM�� in a message passing version for Intel
parallel supercomputers� This will be one of the �rst codes to run on the Intel Paragon and
ORNL will support its use by the climate research community using the Paragon� Work
now in progress seeks to improve on the parallel e�ciency of the code and to develop more
comprehensive models with improved capabilities�

The climate model solves the nonlinear PDE�s for mass� momentum and energy which
govern the general circulation of the atmosphere� Horizontal advection couples columns
of the atmosphere while in the vertical direction a large number of processes are coupled�
On the shortest time scales the interaction of radiation with the earth�s surface� clouds
and absorption by the atmosphere couples a vertical column� Surface moisture� latent heat
exchange� convective overturning and precipitation processes are also represented within

��



each vertical column� The ocean surface temperature and the ability of the ocean surface
layer to store heat during a diurnal cycle are represented without including general ocean
circulation�

Since a large portion of the calculations �radiation� absorption� clouds� etc�� in a vertical
column of atmosphere are independent� the parallelization strategy used in the climate
code is across columns� The columns of atmosphere are divided into adjacent patches
and distributed among the processors of an MPP� These independent calculations comprise
about ��� of the parallel execution time of the code but exhibit some load imbalance�
The coupling in the horizontal direction� the solution of the �ow equations� uses a parallel
spectral transform algorithm for the approximation of horizontal derivatives and a semi�
Lagrangian treatment of the advective term for the moisture equation�

The PVM version was created from a working parallel message passing code running
on the Intel iPSC���� in a couple of weeks� The message passing calls were replaced with
equivalent PVM calls� Some special functions that take advantage hypercube or mesh
connectivity were replaced with simpler PVM routines� For example� a global maximum is
calculated on a single process� Similarly� all the I�O is performed by a single process� The
climate researchers report that PVM has o
ered an excellent debugging and development
tool as well as portability across machines and networks�

� Discussion

In this paper� we have attempted to present overview descriptions of some of the more
interesting and important facets of the PVM system� including the design philosophy� com�
puting model� performance issues� and application experiences� Detailed expositions as well
as pedagogical material on various aspects of the PVM system may be found� for example�
in ���� ��� ��� in addition to the papers already cited� At the time of writing� PVM contin�
ues to be a popular and widely used system for concurrent computing� and it is expected
that the project will mature and evolve even further in the future� In this section we brie�y
discuss ongoing auxiliary projects� future plans� and comment on the long term potential
and scope of PVM and similar technology�

��� Ongoing and Future Work

As mentioned� PVM is an ongoing experimental research project� and continually evolving
new ideas are investigated both by the project team and at external institutions� successful
experimental enhancements or subsystems eventually become part of the software distri�
bution� One example of a relatively concise enhancement that is undergoing investigation
concerns system level optimizations for operating in shared memory environments� Small�
scale SMM�s are re�emerging� and a version of PVM that utilizes physical shared memory

��



for interaction between the daemon and all user processes on such machines is being de�
veloped� Another project is aimed at providing fail�safe capabilities in PVM ���� This
enhanced version uses checkpointing and rollback to recover from single�node failures in
an application�transparent manner� provided the application is not dependent on real�time
events� Several other enhancements are also in progress� including load balancing exten�
sions� integrating debugging support� and task queue management ����

One somewhat di
erent and more extensive subsystem under development is a gen�
eralized distributed computing �GDC� layer for PVM� While scienti�c applications have
provided the technical impetus for the PVM project� more general and commercially ori�
ented uses are now evolving� In order to support such applications� the GDC layer is being
designed� and will support ��� parallel input�output with enhanced �lesystem semantics for
shadowing� interleaved access� and rollback� ��� access control and authentication� and ab�
stract mutual exclusion mechanisms� ��� support for the client�server model of distributed
computing� with facilities for the transparent exporting and invocation of services� and ���
distributed transaction processing primitives� Early results indicate that these facilities
can be provided at high levels of e�ciency� and that the enhanced functionality will prove
bene�cial for many new classes of application domains�

��� Auxiliary Projects

Apart from the experimental work described in the previous section� a number of other
projects related to PVM are in various stages of progress� by nature� these are less inter�
twined with the internals of the core system� and to a large extent� are auxiliary tools or
external subsystems� A few are mentioned below�

� HeNCE is a graphical programming system for PVM� this toolkit generates PVM
programs� from depictions of parallelism dependencies as directed graphs� and provides
an interactive administrative interface for virtual machine con�guration� application
execution� and animated visualization�

� Xab �� is a graphical tool for the run time monitoring of PVM programs� It gathers
monitoring events from applications� and displays this information� which can be
useful for pro�ling� error detection� and optimization�

� The DoPVM subsystem ��� is aimed at supporting the �shared object� paradigm
in PVM� By writing C�� programs in which objects derived from built�in classes
can be declared� this PVM extension permits a shared address space concurrent com�
puting model� thereby alleviating the inherent complexity of explicit message passing
programming�

��



��� Long�term Outlook

It is important to realize that PVM �and other similar systems� is not merely a software
framework for network�based concurrent computing� it is an integrated methodology for
concurrent� distributed� and parallel processing� and more importantly� it is an interface
de�nition for portable application development� From the portability point of view� PVM
applications may be migrated not just from one machine �parallel or serial� to another but
across di
erent collections of machines� Given that PVM can operate within a parallel
machine� across networks� and combinations thereof� signi�cant generality and �exibility
exists� and it is hard to imagine a computing environment where such a model would not be
appropriate� From the point of view of performance� PVM delivers a signi�cant proportion
�of the order of �� 	 ���� of the capacity available from the underlying hardware� operating
system� network� and protocols 	 and we expect to retain this characteristic as network and
CPU speeds increase� and as protocol and OS software becomes more e�cient� It should
be pointed out� while on this topic� that in measuring the worth of systems such as PVM�
comparisons of clusters vs� MPP�s are inappropriate� rather� a meaningful metric is the
value added by PVM to a given hardware environment� whether this is a multiprocessor or
a collection of workstations� In terms of functionality� the PVM system currently supports
an adequate suite of features� and with the integration of extensions described earlier� will
be in a position to cater to a much larger realm of distributed and concurrent applications�
Heterogeneous network�based concurrent computing systems like PVM are therefore likely
to remain viable technologies for concurrent and distributed computing�

References

�� Adam Beguelin� �Xab� A Tool for Monitoring PVM Programs�� Workshop on Hetero�

geneous Processing� IEEE Computer Society Press� Los Alamitos� California� pp� ������
April �����

�� H� J� Siegel� et� al�� �An Overview of the PASM Parallel Processing System�� in it
Computer Architecture� D� D� Gajski� et� al� �eds�� IEEE Computer Society Press�
Washington� DC� pp� �������� �����

�� V� S� Sunderam� �PVM � A Framework for Parallel Distributed Computing�� Journal
of Concurrency� Practice and Experience� ����� pp� �������� December �����

�� A� Beguelin� et� al�� �HeNCE Users Guide�� University of Tennessee Technical Report�
May �����

�� N� Carriero and D� Gelernter� �Linda in Context�� Communications of the ACM� ������
pp� �������� April �����

�� R� Butler and E� Lusk� �User�s Guide to the P� Programming System�� Argonne Na�
tional Laboratory� Technical Report ANL	������ �����

��



�� A� Kolawa� �The Express Programming Environment�� Workshop on Heterogeneous

Network�Based Concurrent Computing� Tallahassee� October �����

�� Louis Turcotte� �A Survey of Software Environments for Exploiting Networked Com�
puting Resources�� Draft Report� Engineering Research Center for Computational Field
Simulations� Mississippi State� January �����

�� G� A� Geist� M� T� Heath� B� W� Peyton� and P� H� Worley� �A machine�independent
communication library�� In J� Gustafson� editor� The Proceedings of the Fourth Confer�

ence on Hypercubes� Concurrent Computers� and Applications� pp� �������� P�O� Box
���� Los Altos� CA� ����� Golden Gate Enterprises�

��� G� A� Geist and V� S� Sunderam� �Network Based Concurrent Computing on the PVM
System�� Journal of Concurrency� Practice and Experience� ����� pp� �������� June
�����

��� B� Schmidt and V� S� Sunderam� �Empirical Analysis of Overheads in Cluster Envi�
ronments�� Journal of Concurrency� Practice and Experience� �to appear�� �����

��� A� Beguelin� J� J� Dongarra� G� A� Geist� R� Manchek� and V� S� Sunderam� �A Users�
Guide to PVM Parallel Virtual Machine�� Technical Report ORNL�TM������� Oak
Ridge National Laboratory� July �����

��� A� Beguelin� J� Dongarra� G� Geist� R� Manchek� and V� Sunderam� �Solving Com�
putational Grand Challenges Using a Network of Supercomputers�� Proceedings of the
Fifth SIAM Conference on Parallel Processing� D� Sorensen� ed�� SIAM� Philadelphia�
�����

��� G� A� Geist and V� S� Sunderam� �The Evolution of the PVM Concurrent Computing
System�� Proceedings � ��th IEEE Compcon Symposium� pp� �������� San Fransisco�
February �����

��� J� Leon� et� al�� �Fail Safe PVM� A Portable Package for Distributed Programming with
Transparent Recovery�� School of Computer Science Technical Report� Carnegie�Mellon
University� CMU�CS�������� February �����

��� J� Dongarra� et� al�� Abstracts� PVM User�s Group Meeting� University of Tennessee�
Knoxville� May �����

��� C� Hartley and V� S� Sunderam� �Concurrent Programming with Shared Objects in
Networked Environments�� Proceedings � �th Intl	 Parallel Processing Symposium� pp�
�������� Los Angeles� April �����

��


