The PVM Concurrent Computing System: Evolution,
Experiences, and Trends *

V. S. Sunderam
Department of Mathematics and Computer Science

Emory University, Atlanta, GA 30322, USA

G. A. Geist
Mathematical Sciences Section
Oak Ridge National Laboratory

Oak Ridge, TN 37831, USA

J. Dongarra & R. Manchek
Computer Science Department

University of Tennessee, Knoxville, TN 37996, USA

Abstract

The PVM system, a software framework for heterogeneous concurrent computing
in networked environments, has evolved in the past several years into a viable technol-
ogy for distributed and parallel processing in a variety of disciplines. PVM supports
a straightforward but functionally complete message passing model, and is capable of
harnessing the combined resources of typically heterogeneous networked computing plat-
forms to deliver high levels of performance and functionality. In this paper, we describe
the architecture of PVM system, and discuss its computing model, the programming
interface it supports, auxiliary facilities for process groups and MPP support, and some
of the internal implementation techniques employed. Performance issues, dealing pri-
marily with communication overheads, are analyzed, and recent findings as well as
experimental enhancements to are presented. In order to demonstrate the viability of
PVM for large scale scientific supercomputing, the paper includes representative case
studies in materials science, environmental science, and climate modeling. We conclude
with a discussion of related projects and future directions, and comment on near and
long-term potential for network computing with the PVM system.

*Research supported by the Applied Mathematical Sciences program, Office of Basic Energy Sciences,
U. S. Department of Energy, under Grant No. DE-FGO05-91ER25105, and contract DE-AC05-840R21400
with Martin Marietta Energy Systems, Inc.; and the National Science Foundation, under Award Nos. CCR-
9118787 and CCR-8809615.

1 Introduction

The past several years has witnessed an ever-increasing acceptance and adoption of paral-
lel processing, both for high-performance scientific computing as well as for more “general
purpose” applications. Furthermore, the message passing model appears to be gaining
predominance as the paradigm of choice, from the perspective of number and variety of
multiprocessors (especially massively parallel processors), and also in terms of applications,
languages, and software systems for its support. This paper concerns one such message
passing system — PVM (Parallel Virtual Machine), that is a software infrastructure that
emulates a generalized distributed memory multiprocessor in heterogeneous networked envi-
ronments. Such an approach, which obviates the need to possess a hardware multiprocessor,
has proven to be a viable and cost-effective technology for concurrent computing in many
application domains. Owing to its ubiquitous nature — a virtual parallel machine may be
constructed using PVM with any set of machines one has access to — and also due to its
simple but complete programming interface, the PVM system has gained widespread accep-
tance in the high-performance scientific computing community. In this paper, we present
the rationale and motivations for this project, the model supported, important design de-
cisions and performance considerations, and case studies in the use of PVM for scientific
supercomputing.

1.1 Heterogeneous Network Computing

Heterogeneous, network-base, concurrent computing refers to an evolving methodology for
general purpose concurrent computing where

e The hardware platform consists of a collection of multifaceted computer systems of
varying architectures, interconnected by one or more network types. A special case
(albeit the most common at present) is a collection of similar or identical workstations
on a single local area network, although a more specific term for such environments
is “cluster”.

e Applications are viewed as comprising several sub-algorithms, each of which is poten-
tially different in terms of its most appropriate programming model, implementation
language, and resource requirements

Heterogeneous network computing refers to models, techniques and toolkits to match
heterogeneous environments on the one hand with complete applications, consisting of dif-
ferent subtasks, on the other. While explicit attention to the heterogeneous aspects and
“functionality exploitation” in such scenarios has only recently received formalized atten-
tion, the concept, in some form has been explored previously, e.g. [2], although usually with
a narrow focus or based on a specialized architecture. The PVM system was designed to re-
alize a more general and encompassing interpretation of heterogeneous computing, and had

a pragmatic bias aimed at providing a working system that could be used in existing envi-
ronments — PVM supports heterogeneous machines, applications, and networks. Research
is continuing towards the eventual goals of the project, namely to propose a heterogeneous
application development model and associated programming frameworks, to enable opti-
mal mapping between application subtasks and the best-suited machines, and to provide
adequate infrastructure for heterogeneous debugging, visualization, profiling and monitor-
ing. In the meantime however, current realizations of PVM, supporting basic heterogeneous
features and robust emulations of heterogeneous concurrent machines, have proven to be
valuable and effective for more traditional applications, especially in high-performance sci-
entific computing. The facilities that are currently available, as well as recent results and
ongoing work, are discussed in the following sections.

1.2 The Evolution of PVM

The PVM project started in the summer of 1989, and has evolved through three ver-
sions of the software, the latter two of which have been publicly distributed. The origi-
nal version of the system [3] was ambitious, in that it attempted to be heterogeneous in
terms of programming model as well — support for emulated shared memory, in addition
to message passing, was incorporated. The basic computing model, which has remained
semantically unchanged, views applications as consisting of components, each representing
a sub-algorithm; each component is an SPMD program, potentially manifested as multiple
instances, cooperating internally as well as with other component instances via the sup-
ported communication and synchronization mechanisms. The unit of concurrency in PVM
is a process, and dependencies in the process flow graph are implemented by embedding ap-
propriate PVM primitives for process management and synchronization within control flow
constructs of the host programming language. The implementation model, also unchanged
from the original version, uses the notion of a “host pool”, a collection of interconnected
computer systems that comprises the virtual machine, on which daemon processes execute
and cooperate to emulate a concurrent computing system. Applications request and receive
services from the daemons; the facilities supported essentially fall into the categories of
process management and virtual machine configuration, message passing, synchronization,
and miscellaneous status checking and housekeeping tasks.

PVM is the mainstay of the Heterogeneous Network Computing research project, a
collaborative venture between Emory University, Oak Ridge National Laboratory, and the
University of Tennessee. In addition to the authors, Keith Moore, and Weicheng Jiang
of UT, and Adam Beguelin of CMU are co-investigators. This project is a basic research
effort aimed at advancing science, and is wholly funded by research appropriations from the
U.S. Department of Energy, the National Science Foundation, and the State of Tennessee.
However, owing to its experimental nature, the PVM project produces software that is
of utility to researchers in the scientific community and to others. This software is, and
has been distributed freely in the interest of advancement of science and is being used in

computational applications around the world.

1.3 Related Work

A number of projects based on the same principle, namely utilizing a collection of inter-
connected machines as a concurrent computing platform, have been developed and several
enjoy widespread adoption and following. While there is some commonality with PVM,
other similar systems offer (sometimes radically) different programming and implementa-
tion models, and present varied functionality and performance. The more widely adopted of
these systems are described in detail elsewhere in this volume; in this subsection, we mention
a few representative systems and comment on differences in functionality and performance.

Linda [5] is a concurrent programming model based on the concept of a “tuple-space”, a
distributed shared memory abstraction via which cooperating processes communicate. P4
and (its derivative Parmacs) [6] are libraries of macros and subroutines developed at Argonne
National Laboratory and GMD, for programming a variety of parallel machines. They
support both the shared-memory model (based on monitors) and the distributed-memory
model (using message-passing). Express is a collection of tools, including a message passing
interface, for programming distributed memory multiprocessors, including network clusters
[7]. Various other systems with similar capabilities are also in existence; a reasonably
comprehensive listing may be found in [8].

With the exception of Linda, whose programming model is not based on conventional
message passing, most other systems support very similar facilities, the core primitives being
system-specific variants of send and receive. PVM supports dynamic process and virtual
machine management unlike other systems where the process structure is statically defined.
The PVM message passing primitives are oriented towards heterogeneous operation, involv-
ing strongly typed constructs for buffering and transmission; some other systems provide
for untyped data transfer. Compared to other systems, the suite of interface primitives
supported by PVM is small; for example P4 and Express provide global combining rou-
tines, and Parmacs supports process topologies. These omissions are deliberate to a certain
extent; the PVM philosophy is to support a core kernel of primitives above which auxiliary
layers may be added (e.g. a PICL [9] port to PVM [10]), while ensuring that facilities that
can only be provided at the system level are comprehensive and functionally complete.

In terms of performance, most message passing systems exhibit only marginal differences,
although systematic comparative studies have not been undertaken. In the context of PVM
and similar systems, performance is usually measured by (1) end-to-end communications
speeds delivered by the software system; and (2) overall execution times of various complete
applications as measured by elapsed wall clock times. Neither of these parametrizations is
very meaningful however, since in typical networked environments, a number of dynamically
varying external influences continually affect these measures. Given these qualifications, and
the fact that network-based systems for the most part utilize the same underlying transport

mechanisms, performance variations tend to be both insignificant and inconsistent. In a
later section, we present experimental measurements of performance for the PVM system,
and propose strategies under investigation to enhance them.

2 PVM Model and Features

2.1 PVM Computing Model

Under PVM, a user defined collection of serial, parallel, and vector computers emulates
a large distributed-memory computer. Throughout this report the term virtual machine
will be used to designate this logical distributed-memory computer, and host will be used
to designate one of the member computers. Multiple users can configure overlapping vir-
tual machines, and each user can execute several PVM applications simultaneously. PVM
supplies the functions to automatically start up tasks on the virtual machine and allows
the tasks to communicate and synchronize with each other. A task is defined as a unit
of computation in PVM analogous to a Unix process. It is often a Unix process, but not
necessarily so. Applications, which can be written in Fortran77 or C, can be parallelized
by using message-passing constructs common to most distributed-memory computers. By
sending and receiving messages, multiple tasks of an application can cooperate to solve a
problem in parallel. Figure 1 depicts the PVM computing model as well as an architectural
abstraction of the system.

The model assumes that any task can send a message to any other PVM task, and that
there is no limit to the size or number of such messages. The PVM communication model
provides asynchronous blocking send, asynchronous blocking receive, and non-blocking re-
ceive functions. In our terminology, a blocking send returns as soon as the send buffer is
free for reuse regardless of the state of the receiver. A non-blocking receive immediately
returns with either the data or a flag that the data has not arrived, while a blocking receive
returns only when the data is in the receive buffer. In addition to these point-to-point
communication functions the model supports multicast to a set of tasks and broadcast to
a user defined group of tasks. The PVM model guarantees that message order is preserved
between any pair of communicating entities.

2.2 Core Features

PVM supplies routines that enable a user process to register/leave a collection of coop-
erating processes, routines to add and delete hosts from the virtual machine, to initiate
and terminate PVM tasks, to synchronize with and send signals to other PVM tasks, and
routines to obtain information about the virtual machine configuration and active PVM
tasks. Synchronization may be achieved in one of several ways, e.g. by sending a Unix
signal to another task, or by using barriers. Another method notifies a set of tasks of an

Cluster 1
Partitioning .
Bridge/
40 AL/ Router

! t Comp 2 a
Compl ./ \\\ <) T
SPMD '
SPMD !
() |
C MPP | !

I

() 1/

o

. ,’ Cluster 2 :

\ / |

N\ ¥ Cluster 3 |

Output & 7 5 ﬁ 5

. PVM: .
Displ V4 .
iy Uniform 7 N
- - Inter-component comm & sync View of Vector SC
— Inter-instance comm & sync Multiprogrammed
Virtual Machine

(8) PVM Computation Model (b) PVM Architectural Overview

Figure 1: PVM System Overview

event occurrence by sending them a message with a user-specified tag that the application
can check for. The notification events include the exiting of a task, the deletion (or failure)
of a host, and the addition of a host.

PVM provides routines for packing and sending messages between tasks. The core
communication routines include an asynchronous send to a single task, and a multicast
to a list of tasks. PVM transmits messages over the underlying network using the fastest
mechanism available e.g. either UDP, TCP on networks based on the Internet protocols,
or other high-speed interconnects available between the communicating processors. One
example of this third option is described in section 2.3. Messages can be received by
filtering on source or message tag (both of which may be specified as wildcards), with either
blocking or non-blocking receive routines. A routine can be called to return information
about received messages such as the source, tag, and size of the data. Message buffers are
allocated dynamically, thereby permitting messages limited in size only by native machine
parameters. There are routines for creating and managing multiple send and receive buffers.
This feature allows the user to write PVM math libraries and graphical interfaces that can
be called inside other PVM applications without communication conflicts. The user can
switch context from one set of buffers (for example used by the application) to another set
of buffers (for example used inside a math library call).

2.3 Auxiliary Features

Dynamic process groups are layered above the core PVM routines. A process can belong
to multiple groups, and groups can change dynamically at any time during a computation.
Routines are provided for tasks to join and leave a named group. Group members are
uniquely numbered from zero to the number of group members minus one. If gaps appear
in this numbering due to tasks leaving the group, PVM attempts to fill these gaps with
subsequently joining tasks. Tasks can also query for information about other group mem-
bers. Functions that logically deal with groups of tasks such as broadcast and barrier use
the user’s explicitly defined group names as arguments.

PVM version 3 is designed so that native multiprocessor calls can be compiled into the
source. This allows the fast message-passing of a particular system to be realized by the
PVM application. Messages between two nodes of a multiprocessor use its native message-
passing routines, while messages destined for an external host are routed via the user’s
PVM daemon on the multiprocessor. On shared-memory systems the data movement can
be implemented with a shared buffer pool and lock primitives. The MPP subsystem of
PVM consists of a daemon that manages the allocation and deallocation of nodes on the
multiprocessor. This daemon is implemented in terms of PVM 3 core routines. The second
part of the MPP port is a specialized libpvm library for this architecture that contains the
fast routing calls between nodes of this host.

2.4 Implementation

The PVM system is composed of two parts. The first is a daemon, called pvmd3 (sometimes
simply pvmd), that executes on all the computers making up the virtual machine. Pvmd3 is
designed so any user with a valid login can install this daemon on a machine. A user wishing
to use PVM first configures a virtual machine by specifying a host-pool list; the daemons
are started on each, and cooperate to emulate a virtual machine. The PVM application can
then be started from a shell command line prompt on any of these computers.

The second part of the system is a library of PVM interface routines (1ibpvm3.a). This
library contains user callable routines for message passing, spawning processes, coordinating

tasks, and modifying the virtual machine. Application programs must be linked with this
library to use PVM.

The PVM system components have been compiled and tested on the architectures shown
in table 1. This table includes hosts ranging from 386 laptop computers to Cray C90s
and MPP computers. In addition several vendors are supplying and supporting optimized
versions of PVM for their multiprocessor systems including: Cray Research, IBM, Convex,

Intel, SGI, and DEC.

ARCH Machine Notes
AFXS8 Alliant FX/8
ALPHA DEC Alpha DEC OSF-1
BAL Sequent Balance DYNIX
BFLY BBN Butterfly TC2000
BSD386 80386,/486 Unix box BSDI
CM2 Thinking Machines CM2 | Sun front-end
CM5 Thinking Machines CMb
CNVX Convex C-series
CNVXN Convex C-series native mode
DGAV Data General Aviion
CRAY C-90, YMP, Cray-2 UNICOS
CRAYSMP | Cray S-MP
HP300 HP-9000 model 300 HPUX
HPPA HP-9000 PA-RISC
1860 Intel iPSC/860 link -Irpe
IPSC2 Intel iPSC/2 386 host SysV
KSR1 Kendall Square KSR-1 OSF-1
NEXT NeXT
PGON Intel Paragon link -lrpc
PMAX DECstation 3100, 5100 Ultrix
RS6K IBM/RS6000 AIX
RT IBM RT
SGI Silicon Graphics IRIS link -lsun
SUN3 Sun 3 SunOS
SUN4 Sun 4, SPARCstation
SYMM Sequent Symmetry
TITN Stardent Titan
UVAX DEC MicroVAX

Table 1: Architectures tested with PVM 3.

3 Performance Considerations

PVM and similar systems normally operate in general purpose networked environments,
where neither the CPU’s of the individual machines nor the interconnection network is
dedicated. As a result, raw performance or speedup of a given application is hard to
measure. Even in a dedicated networked environment, with no external use, the above is
true since operating system activity, window and filesystem overheads, and administrative
network traffic can contribute to deviated measurements.

process level.

If these factors are ignored,
network computing systems behave in a manner that is reasonably predictable [11]. In such
a scenario, most of the focus is on communications overhead; CPU optimizations can be
approached independently using traditional methods, since parallelism granularity is at the

Network Message Length
Type 0 | 128 | 5312 | 1K | 4K | 16K | 64K | 1M
Ethernet | 1.2 | 1.5 | 2.1 | 3.2 | 7.2 | 24.5 | 82.3 | 1211.2
FDDI | 12| 15| 19|25 |59]16.1 | 60.3 | 665.7

Table 2: Data transfer times (milliseconds)

Operation No. of Procs
Type 2 4 8 16 32
Barrier 2.2 1 10.5 | 28.1 | 53.2 | 107.2
Broadcast | 3.2 | 5.5 | 15.9 | 28.5 | 65.9
Opt. Beast | 1.2 | 3.2 | 11.5 | 18.2 | 35.1

Table 3: Global operation times (milliseconds)

3.1 Raw Communication Performance

Given the above factors, performance evaluation of PVM and similar systems normally
begins with an analysis of data transfer costs. The time required for processes to exchange
messages is dependent on several factors, including the host machines, network speeds, and
most predominantly, the message size. In Table 2 below, we show message passing times in
milliseconds for PVM, for varying message lengths and two different network types; these
experiments were conducted on unloaded workstations rated at 40-50 MIPS.

Two important observations pertain to Table 2. The first concerns latency, or the mini-
mal time required to send a zero-length message. Irrespective of network type, this measure
is of the order of a millisecond, and depends largely on the speed of the host machines, as
a significant fraction of this overhead is incurred in within-host protocol processing. The
second factor is throughput. As the table shows, the Ethernet network could be driven
at near theoretical peak capacity for large messages; similar ratios are conjectured to be
possible for fast networks with increases in host speeds and protocol optimizations.

Apart from point-to-point data transfer, group communication facilities are also an
important measure of communications performance. Table 3 shows times in milliseconds
for barrier synchronization and broadcasting (1K messages) using the release version of
PVM that uses naive but robust algorithms, as yet untuned for optimality. Also shown
in Table 3 is an experimental multicast (1K messages) facility that exploits the broadcast
medium of networks such as Ethernet.

3.2 Improving Communications Performance

As shown in the previous section, communication throughput approaching the medium ca-
pacity can be achieved in PVM, provided large messages are transferred. This has also been
demonstrated in situations involving multiple, simultaneous message passing; i.e. a high
percentage of the aggregate bandwidth of the medium is utilizable by PVM application pro-
cesses. The factor that is difficult to optimize however, is latency, implying poor efficiency
and speedup when message exchanges are short and intermittent.

One approach that is under investigation is to enable PVM operation directly above the
data link layer (rather than the transport layer); a feasible option when operating in a local
network environment. An experimental version of PVM that operates in this fashion has
been designed, and latency improvements of the order of 50% have been observed. Work
is in progress to integrate this into the release version of PVM, incorporating intelligence
to determine on a send-by-send basis when it is appropriate to utilize this data transfer
mechanism.

4 Scientific Supercomputing

PVM is being increasingly adopted at numerous institutions worldwide for distributed sci-
entific computing. Many scientific, industrial, and medical applications are being deployed
under PVM in clustered workstation networks. An important motivation (for the use of
PVM and other cluster computing systems) is price performance — generally, clusters are
about 10 times as cost-effective as supercomputers for a given performance capability, for
several classes of applications. Other motivations for the increasing use of PVM include
a high degree of portability and a straightforward, robust interface that is well suited for
scientific application development.

Three computational grand challenges being addressed by ORNL as well as several
other applications important to DOE’s mission have been converted to PVM. The grand
challenges are in groundwater transport to assist in waste site clean up, first principles
materials calculations to assist in the design of new alloys and ceramics, and global climate
modeling to predict the effects of things such as ozone depletion, and global warming. In
the next sections we briefly describe these three applications and the effort involved in
converting them to PVM.

4.1 Groundwater
ORNL is part of a consortium of groundwater researchers whose goal is to develop state of

the art parallel models for high performance parallel computers. These computer models
will enable researchers to model flow with higher resolution and greater accuracy than

10

previously possible. As a first step researchers at ORNL have developed a parallel 3-D
finite element code called PFEM that models water flow through saturated-unsaturated
media. PFEM solves the system of equations

dh S

FE =V [K;K(Vh+Vz)]+q,

where h is the pressure head, t is time, K is the saturated hydraulic conductivity tensor,
K, is the relative hydraulic conductivity or relative permeability, z is the potential head, ¢
is the source/sink and F' is the water capacity (/' = df/dh, with 8 the moisture content)
after neglecting the compressibility of the water and of the media.

PFEM was parallelized by partitioning the physical domain into p pieces and statically
assigning one subdomain to each of p tasks. The present version uses only static load-
balancing and relies on the user to define the partitioning, but other consortium members
are working on ways to automate these operations. At each timestep, each task solves
the above equation for its subdomain and then exchanges its boundary region with its
neighboring regions. Originally developed on an Intel iPSC/860 multiprocessor, a PVM
version of PFEM was straightforward to create requiring an undergraduate student less than
3 weeks to complete. Presently, the PVM version of PFEM has been delivered to members
of the groundwater consortium for validation testing using networks of workstations while
they await the availability of parallel supercomputers. No performance tests had been done
at the time of this writing.

4.2 Materials

ORNL material scientists are developing algorithms for studying the physical properties
of complex substitutionally disordered materials. A few important examples of physical
systems and situations in which substitutional disorder plays a critical role in determin-
ing material properties include: high-strength alloys, high-temperature superconductors,
magnetic phase transitions, and metal/insulator transitions. One of the algorithms being
developed is an implementation of the Korringa, Kohn and Rostoker coherent potential ap-
proximation (KKR-CPA) method for calculating the electronic properties, energetics and
other ground state properties of substitutionally disordered alloys. The KKR-CPA method
extends the usual implementation of density functional theory to substitutionally disordered
materials. In this sense it is a completely first principles theory of the properties of substi-
tutionally disordered materials requiring as input only the atomic numbers of the species
making up the solid.

Starting with the original 20,000 line serial KKR-CPA code, it required about three
months to produce a PVM version of the code. After profiling the code and studying
the potential sites for coarse-grain parallelism, a master/slave paradigm was chosen for
implementation. The master task performs all the I/O and coordinates all the slaves. The
slave tasks perform the majority of the computational work. This split reduced the amount

11

of memory any one task required and also allowed the master task to do dynamic load
balancing. Several megabytes of data is transferred between master and slaves, but no data
is shared between slaves. Moreover the data transfers are organized as a few large messages
rather than many small ones to reduce message latency overhead.

Using PVM the KKR-CPA code is able to achieve over 200 Mflops utilizing a network of
ten IBM RS/6000 (6 model 530’s + 4 model 320’s) workstations; estimated to be about 82%
of the maximum achievable for this code. Given this capability, the KKR-CPA application
is being used as a research code to solve important materials science problems. Since
its development the KKR-CPA code has been used to compare the electronic structure
of two high temperature superconductors, Ba(BisPb7)Os and (BagK 4)BiOs, to explain
anomalous experimental results from a high strength alloy, NiAl, and to study the effect
of magnetic multilayers in CrV and CrMo alloys for their possible use in magnetic storage
devices.

The PVM KKR-CPA code has also been used to test concepts in distributed computing.
For example, with help from Cray Research the KKR-CPA code was run on a network of
C90 and YMP multiprocessors. Using 27 processors scattered across several sites, the Cray-
based PVM was able to achieve an average aggregate performance of over 9 Gflops while
calculating superconductor properties. In a test of the portability of PVM, the KKR-CPA
code was run across a virtual machine composed of two Intel Paragons, a CM-5, an Intel
i860, and IBM workstations. These hosts are geographically distributed at several sites. In
this test the master task ran on one of the IBM workstations and slave tasks ran on nodes of
the various MPP hosts. The performance of this test was consistent with the small number
of nodes used on each host.

4.3 Climate

A collaboration of researchers from ORNL, Argonne National Lab, and the National Center
for Atmospheric Research (NCAR) was formed to address atmospheric modeling. Their first
task has been to develop parallel algorithms and implement the recently developed version
of the NCAR Community Climate Model (CCM2) in a message passing version for Intel
parallel supercomputers. This will be one of the first codes to run on the Intel Paragon and
ORNL will support its use by the climate research community using the Paragon. Work
now in progress seeks to improve on the parallel efficiency of the code and to develop more
comprehensive models with improved capabilities.

The climate model solves the nonlinear PDE’s for mass, momentum and energy which
govern the general circulation of the atmosphere. Horizontal advection couples columns
of the atmosphere while in the vertical direction a large number of processes are coupled.
On the shortest time scales the interaction of radiation with the earth’s surface, clouds
and absorption by the atmosphere couples a vertical column. Surface moisture, latent heat
exchange, convective overturning and precipitation processes are also represented within

12

each vertical column. The ocean surface temperature and the ability of the ocean surface
layer to store heat during a diurnal cycle are represented without including general ocean
circulation.

Since a large portion of the calculations (radiation, absorption, clouds, etc.) in a vertical
column of atmosphere are independent, the parallelization strategy used in the climate
code is across columns. The columns of atmosphere are divided into adjacent patches
and distributed among the processors of an MPP. These independent calculations comprise
about 50% of the parallel execution time of the code but exhibit some load imbalance.
The coupling in the horizontal direction, the solution of the flow equations, uses a parallel
spectral transform algorithm for the approximation of horizontal derivatives and a semi-
Lagrangian treatment of the advective term for the moisture equation.

The PVM version was created from a working parallel message passing code running
on the Intel iPSC/860 in a couple of weeks. The message passing calls were replaced with
equivalent PVM calls. Some special functions that take advantage hypercube or mesh
connectivity were replaced with simpler PVM routines. For example, a global maximum is
calculated on a single process. Similarly, all the 1/0O is performed by a single process. The
climate researchers report that PVM has offered an excellent debugging and development
tool as well as portability across machines and networks.

5 Discussion

In this paper, we have attempted to present overview descriptions of some of the more
interesting and important facets of the PVM system, including the design philosophy, com-
puting model, performance issues, and application experiences. Detailed expositions as well
as pedagogical material on various aspects of the PVM system may be found, for example,
in [12, 13, 14], in addition to the papers already cited. At the time of writing, PVM contin-
ues to be a popular and widely used system for concurrent computing, and it is expected
that the project will mature and evolve even further in the future. In this section we briefly
discuss ongoing auxiliary projects, future plans, and comment on the long term potential
and scope of PVM and similar technology.

5.1 Ongoing and Future Work

As mentioned, PVM is an ongoing experimental research project, and continually evolving
new ideas are investigated both by the project team and at external institutions; successful
experimental enhancements or subsystems eventually become part of the software distri-
bution. One example of a relatively concise enhancement that is undergoing investigation
concerns system level optimizations for operating in shared memory environments. Small-
scale SMM’s are re-emerging, and a version of PVM that utilizes physical shared memory

13

for interaction between the daemon and all user processes on such machines is being de-
veloped. Another project is aimed at providing fail-safe capabilities in PVM [15]. This
enhanced version uses checkpointing and rollback to recover from single-node failures in
an application-transparent manner, provided the application is not dependent on real-time
events. Several other enhancements are also in progress, including load balancing exten-
sions, integrating debugging support, and task queue management [16].

One somewhat different and more extensive subsystem under development is a gen-
eralized distributed computing (GDC) layer for PVM. While scientific applications have
provided the technical impetus for the PVM project, more general and commercially ori-
ented uses are now evolving. In order to support such applications, the GDC layer is being
designed, and will support (1) parallel input-output with enhanced filesystem semantics for
shadowing, interleaved access, and rollback; (2) access control and authentication, and ab-
stract mutual exclusion mechanisms; (3) support for the client-server model of distributed
computing, with facilities for the transparent exporting and invocation of services; and (4)
distributed transaction processing primitives. FEarly results indicate that these facilities
can be provided at high levels of efficiency, and that the enhanced functionality will prove
beneficial for many new classes of application domains.

5.2 Auxiliary Projects

Apart from the experimental work described in the previous section, a number of other
projects related to PVM are in various stages of progress; by nature, these are less inter-
twined with the internals of the core system, and to a large extent, are auxiliary tools or
external subsystems. A few are mentioned below:

e HeNCE is a graphical programming system for PVM; this toolkit generates PVM
programs, from depictions of parallelism dependencies as directed graphs, and provides
an interactive administrative interface for virtual machine configuration, application
execution, and animated visualization.

e Xab [1] is a graphical tool for the run time monitoring of PVM programs. It gathers
monitoring events from applications, and displays this information, which can be
useful for profiling, error detection, and optimization.

e The DoPVM subsystem [17] is aimed at supporting the “shared object” paradigm
in PVM. By writing C++ programs in which objects derived from built-in classes
can be declared, this PVM extension permits a shared address space concurrent com-
puting model, thereby alleviating the inherent complexity of explicit message passing
programming.

14

5.3 Long-term Outlook

It is important to realize that PVM (and other similar systems) is not merely a software
framework for network-based concurrent computing; it is an integrated methodology for
concurrent, distributed, and parallel processing, and more importantly, it is an interface
definition for portable application development. From the portability point of view, PVM
applications may be migrated not just from one machine (parallel or serial) to another but
across different collections of machines. Given that PVM can operate within a parallel
machine, across networks, and combinations thereof, significant generality and flexibility
exists, and it is hard to imagine a computing environment where such a model would not be
appropriate. From the point of view of performance, PVM delivers a significant proportion
(of the order of 80 — 90%) of the capacity available from the underlying hardware, operating
system, network, and protocols — and we expect to retain this characteristic as network and
CPU speeds increase, and as protocol and OS software becomes more efficient. It should
be pointed out, while on this topic, that in measuring the worth of systems such as PVM,
comparisons of clusters vs. MPP’s are inappropriate; rather, a meaningful metric is the
value added by PVM to a given hardware environment, whether this is a multiprocessor or
a collection of workstations. In terms of functionality, the PVM system currently supports
an adequate suite of features, and with the integration of extensions described earlier, will
be in a position to cater to a much larger realm of distributed and concurrent applications.
Heterogeneous network-based concurrent computing systems like PVM are therefore likely
to remain viable technologies for concurrent and distributed computing.

References

[1] Adam Beguelin, “Xab: A Tool for Monitoring PVM Programs”, Workshop on Hetero-
geneous Processing, IEEE Computer Society Press, Los Alamitos, California, pp. 92-97,
April 1993.

[2] H. J. Siegel, et. al., “An Overview of the PASM Parallel Processing System”, in it
Computer Architecture, D. D. Gajski, et. al. (eds), IEEE Computer Society Press,
Washington, DC, pp. 319-407, 1987.

[3] V. S. Sunderam, “PVM : A Framework for Parallel Distributed Computing”, Journal
of Concurrency: Practice and Frperience, 2(4), pp. 315-339, December 1990.

[4] A. Beguelin, et. al.;, “HeNCE Users Guide”, University of Tennessee Technical Report,
May 1992.

[5] N. Carriero and D. Gelernter, “Linda in Context”, Communications of the ACM, 32(4),
pp. 444-458, April 1989.

[6] R. Butler and E. Lusk, “User’s Guide to the P4 Programming System”, Argonne Na-
tional Laboratory, Technical Report ANL-92/17, 1992.

15

[7] A. Kolawa, “The Express Programming Environment”, Workshop on Heterogeneous
Network-Based Concurrent Computing, Tallahassee, October 1991.

[8] Louis Turcotte, “A Survey of Software Environments for Exploiting Networked Com-
puting Resources”, Draft Report, Engineering Research Center for Computational Field
Simulations, Mississippi State, January 1993.

[9] G. A. Geist, M. T. Heath, B. W. Peyton, and P. H. Worley. “A machine-independent
communication library”, In J. Gustafson, editor, The Proceedings of the Fourth Confer-

ence on Hypercubes, Concurrent Computers, and Applications, pp. 565-568, P.O. Box
428, Los Altos, CA, 1990. Golden Gate Enterprises.

[10] G. A. Geist and V. S. Sunderam, “Network Based Concurrent Computing on the PVM
System”, Journal of Concurrency: Practice and Experience, 4(4), pp. 293-311, June
1992.

[11] B. Schmidt and V. S. Sunderam, “Empirical Analysis of Overheads in Cluster Envi-
ronments”, Journal of Concurrency: Practice and Fxperience, (to appear), 1993.

[12] A. Beguelin, J. J. Dongarra, G. A. Geist, R. Manchek, and V. S. Sunderam. “A Users’
Guide to PVM Parallel Virtual Machine”, Technical Report ORNL/TM-11826, Oak
Ridge National Laboratory, July 1991.

[13] A. Beguelin, J. Dongarra, G. Geist, R. Manchek, and V. Sunderam, “Solving Com-
putational Grand Challenges Using a Network of Supercomputers”, Proceedings of the
Fifth SIAM Conference on Parallel Processing, D. Sorensen, ed., STAM, Philadelphia,
1991.

[14] G. A. Geist and V. S. Sunderam, “The Evolution of the PVM Concurrent Computing
System”, Proceedings — 26th IFEE Compcon Symposium, pp. 471-478, San Fransisco,
February 1993.

[15] J. Leon, et. al., “Fail Safe PVM: A Portable Package for Distributed Programming with
Transparent Recovery”, School of Computer Science Technical Report, Carnegie-Mellon
University, CMU-CS-93-124, February 1993.

[16] J. Dongarra, et. al., Abstracts: PVM User’s Group Meeting, University of Tennessee,
Knoxville, May 1993.

[17] C. Hartley and V. S. Sunderam, “Concurrent Programming with Shared Objects in
Networked Environments”, Proceedings — 7th Intl. Parallel Processing Symposium, pp.
471-478, Los Angeles, April 1993.

16

