
Homework 3 for CMSC 858E

Due 10/02/2018

Note: problem and page number are for the PDF version provided on course website. In case the
problem/section/page numbers are not the same, the corresponding pages are also included in this pdf.

Problem 1

Solve problem 2.2 on page 59 in The Design of Approximation Algorithms .

Problem 2

Consider Theorem 2.2 on page 37 in The Design of Approximation Algorithms. Please give a counter-example
for this theorem when we no longer assume all deadlines are non-positive.

Problem 3

Solve problem 2.5 on page 59 in The Design of Approximation Algorithms

Problem 4

Solve problem 2.6 on page 60 in The Design of Approximation Algorithms

Problem 5

Solve problem 2.10 on page 60 in The Design of Approximation Algorithms

1

2.2 The k-center problem 37

Lemma 2.1: For each subset S of jobs,

L∗
max ≥ r(S) + p(S)− d(S).

Proof. Consider the optimal schedule, and view this simply as a schedule for the jobs in the
subset S. Let job j be the last job in S to be processed. Since none of the jobs in S can
be processed before r(S), and in total they require p(S) time units of processing, it follows
that job j cannot complete any earlier than time r(S) + p(S). The due date of job j is d(S)
or earlier, and so the lateness of job j in this schedule is at least r(S) + p(S) − d(S); hence,
L∗
max ≥ r(S) + p(S)− d(S).

A job j is available at time t if its release date rj ≤ t. We consider the following natural
algorithm: at each moment that the machine is idle, start processing next an available job with
the earliest due date. This is known as the earliest due date (EDD) rule.

Theorem 2.2: The EDD rule is a 2-approximation algorithm for the problem of minimizing
the maximum lateness on a single machine subject to release dates with negative due dates.

Proof. Consider the schedule produced by the EDD rule, and let job j be a job of maximum
lateness in this schedule; that is, Lmax = Cj − dj . Focus on the time Cj in this schedule; find
the earliest point in time t ≤ Cj such that the machine was processing without any idle time
for the entire period [t, Cj). Several jobs may be processed in this time interval; we only require
that the machine not be idle for some interval of positive length within it. Let S be the set of
jobs that are processed in the interval [t, Cj). By our choice of t, we know that just prior to
t, none of these jobs were available (and clearly at least one job in S is available at time t);
hence, r(S) = t. Furthermore, since only jobs in S are processed throughout this time interval,
p(S) = Cj − t = Cj − r(S). Thus, Cj ≤ r(S) + p(S); since d(S) < 0, we can apply Lemma 2.1
to get that

L∗
max ≥ r(S) + p(S)− d(S) ≥ r(S) + p(S) ≥ Cj . (2.1)

On the other hand, by applying Lemma 2.1 with S = {j},

L∗
max ≥ rj + pj − dj ≥ −dj . (2.2)

Adding inequalities (2.1) and (2.2), we see that the maximum lateness of the schedule computed
is

Lmax = Cj − dj ≤ 2L∗
max,

which completes the proof of the theorem.

2.2 The k-center problem

The problem of finding similarities and dissimilarities in large amounts of data is ubiquitous:
companies wish to group customers with similar purchasing behavior, political consultants group
precincts by their voting behavior, and search engines group webpages by their similarity of
topic. Usually we speak of clustering data, and there has been extensive study of the problem
of finding good clusterings.

Here we consider a particular variant of clustering, the k-center problem. In this problem,
we are given as input an undirected, complete graph G = (V,E), with a distance dij ≥ 0
between each pair of vertices i, j ∈ V . We assume dii = 0, dij = dji for each i, j ∈ V , and

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

2.7 Edge coloring 59

2.2 Prove Lemma 2.8: show that for any input to the problem of minimizing the makespan on
identical parallel machines for which the processing requirement of each job is more than
one-third the optimal makespan, the longest processing time rule computes an optimal
schedule.

2.3 We consider scheduling jobs on identical machines as in Section 2.3, but jobs are now
subject to precedence constraints. We say i ≺ j if in any feasible schedule, job i
must be completely processed before job j begins processing. A natural variant on the
list scheduling algorithm is one in which whenever a machine becomes idle, then any
remaining job that is available is assigned to start processing on that machine. A job j
is available if all jobs i such that i ≺ j have already been completely processed. Show
that this list scheduling algorithm is a 2-approximation algorithm for the problem with
precedence constraints.

2.4 In this problem, we consider a variant of the problem of scheduling on parallel machines
so as to minimize the length of the schedule. Now each machine i has an associated speed
si, and it takes pj/si units of time to process job j on machine i. Assume that machines
are numbered from 1 to m and ordered such that s1 ≥ s2 ≥ · · · ≥ sm. We call these
related machines.

(a) A ρ-relaxed decision procedure for an scheduling problem is an algorithm such that
given an instance of the scheduling problem and a deadline D either produces a
schedule of length at most ρ · D or correctly states that no schedule of length D
is possible for the instance. Show that given a polynomial-time ρ-relaxed decision
procedure for the problem of scheduling related machines, one can produce a ρ-
approximation algorithm for the problem.

(b) Consider the following variant of the list scheduling algorithm, now for related ma-
chines. Given a deadline D, we label every job j with the slowest machine i such
that the job could complete on that machine in time D; that is, pj/si ≤ D. If there
is no such machine for a job j, it is clear that no schedule of length D is possible.
If machine i becomes idle at a time D or later, it stops processing. If machine i
becomes idle at a time before D, it takes the next job of label i that has not been
processed, and starts processing it. If no job of label i is available, it looks for jobs
of label i+1; if no jobs of label i+1 are available, it looks for jobs of label i+2, and
so on. If no such jobs are available, it stops processing. If not all jobs are processed
by this procedure, then the algorithm states that no schedule of length D is possible.

Prove that this algorithm is a polynomial-time 2-relaxed decision procedure.

2.5 In the minimum-cost Steiner tree problem, we are given as input a complete, undirected
graph G = (V,E) with nonnegative costs cij ≥ 0 for all edges (i, j) ∈ E. The set of
vertices is partitioned into terminals T and nonterminals (or Steiner vertices) V − T .
The goal is to find a minimum-cost tree containing all terminals.

(a) Suppose initially that the edge costs obey the triangle inequality; that is, cij ≤
cik + ckj for all i, j, k ∈ V . Let G[T] be the graph induced on the set of terminals;
that is, G[T] contains the vertices in T and all edges from G that have both endpoints
in T . Consider computing a minimum spanning tree in G[T]. Show that this gives a
2-approximation algorithm for the minimum-cost Steiner tree problem.

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

60 Greedy algorithms and local search

(b) Now we suppose that edge costs do not obey the triangle inequality, and that the
input graph G is connected but not necessarily complete. Let c′ij be the cost of
the shortest path from i to j in G using input edge costs c. Consider running the
algorithm above in the complete graph G′ on V with edge costs c′ to obtain a tree T ′.
To compute a tree T in the original graph G, for each edge (i, j) ∈ T ′, we add to T all
edges in a shortest path from i to j in G using input edge costs c. Show that this is
still a 2-approximation algorithm for the minimum-cost Steiner tree problem on the
original (incomplete) input graph G. G′ is sometimes called the metric completion
of G.

2.6 Prove that there can be no α-approximation algorithm for the minimum-degree spanning
tree problem for α < 3/2 unless P = NP.

2.7 Suppose that an undirected graph G has a Hamiltonian path. Give a polynomial-time
algorithm to find a path of length at least Ω(logn/(log log n)).

2.8 Consider the local search algorithm of Section 2.6 for finding a minimum-degree spanning
tree, and suppose we apply a local move to a node whenever it is possible to do so; that
is, we don’t restrict local moves to nodes with degrees between ∆(T)− ℓ and ∆(T). What
kind of performance guarantee can you obtain for a locally optimal tree in this case?

2.9 As given in Exercise 2.5, in the Steiner tree problem we are given an undirected graph
G = (V,E) and a set of terminals T ⊆ V . A Steiner tree is a tree in G in which all the
terminals are connected; a non-terminal need not be spanned. Show that the local search
algorithm of Section 2.6 can be adapted to find a Steiner tree whose maximum degree
is at most 2OPT+⌈log2 n⌉, where OPT is the maximum degree of a minimum-degree
Steiner tree.

2.10 Let E be a set of items, and for S ⊆ E, let f(S) give the value of the subset S. Suppose
we wish to find a maximum value subset of E of at most k items. Furthermore, suppose
that f(∅) = 0, and that f is monotone and submodular. We say that f is monotone if for
any S and T with S ⊆ T ⊆ E, then f(S) ≤ f(T). We say that f is submodular if for any
S, T ⊆ E, then

f(S) + f(T) ≥ f(S ∪ T) + f(S ∩ T).

Show that the greedy (1 − 1
e)-approximation algorithm of Section 2.5 extends to this

problem.

2.11 In the maximum coverage problem, we have a set of elements E, and m subsets of elements
S1, . . . , Sm ⊆ E, each with a nonnegative weight wj ≥ 0. The goal is to choose k elements
such that we maximize the weight of the subsets that are covered. We say that a subset
is covered if we have chosen some element from it. Thus we want to find S ⊆ E such that
|S| = k and that we maximize the total weight of the subsets j such that S ∩ Sj ̸= ∅.

(a) Give a (1− 1
e)-approximation algorithm for this problem.

(b) Show that if an approximation algorithm with performance guarantee better than
1− 1

e+ϵ exists for the maximum coverage problem for some constant ϵ > 0, then every

NP-complete problem has a O(nO(log logn)) time algorithm (Hint: Recall Theorem
1.13).

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

