
Homework 6 for CMSC 858E

Due 12/05/2018

Note: problem and page number are for the PDF version provided on course website. In case the
problem/section/page numbers are not the same, the corresponding pages are also included in this pdf.

Problem 1

Solve problem 5.1, on page 135 in The Design of Approximation Algorithms.

Problem 2

Solve problem 5.3 on page 136 in The Design of Approximation Algorithms.

Problem 3

Solve problem 7.5 on page 192 in The Design of Approximation Algorithms. You can work in groups for this
problem, you are welcomed to solve it by yourself.

Problem 4

Solve problem 7.8 on page 193 in The Design of Approximation Algorithms.

Problem 5

Solve problem 8.2 on page 225 in The Design of Approximation Algorithms.

1

5.12 Random sampling and coloring dense 3-colorable graphs 135

Proof. This follows from Lemmas 5.33 and 5.34. The probability that both statements of the
lemma are true is at least one minus the sum of the probabilities that either statement is false.
The probability that every v /∈ S has no neighbor in S is at worst n times the probability that
a given vertex v /∈ S has no neighbor in S. Since δ ≤ 1, the overall probability that both
statements are true is at least

1− n−c/δ − n · n−3c ≥ 1− 2n−(c−1).

Now we assume we have some coloring of the vertices in S, not necessarily one that is
consistent with the correct coloring of the graph. We also assume that every vertex not in S
has at least one neighbor in S. We further assume that the coloring of S is such that every edge
with both endpoints in S has differently colored endpoints, since otherwise this is clearly not a
correct coloring of the graph. Assume we color the graph with colors {0, 1, 2}. Given a vertex
v /∈ S, because it has some neighbor in S colored with some color n(v) ∈ {0, 1, 2}, we know that
v cannot be colored with color n(v). Possibly v has other neighbors in S with colors other than
n(v). Either this forces the color of v or there is no way we can successfully color v; in the latter
case our current coloring of S must not have been correct, and we terminate. If the color of v
is not determined, then we create a binary variable x(v), which if true indicates that we color v
with color n(v) + 1 (mod 3), and if false indicates that we color v with color n(v)− 1 (mod 3).
Now every edge (u, v) ∈ E for u, v /∈ S imposes the constraint n(u) ̸= n(v). To capture this,
we create an instance of the maximum satisfiability problem such that all clauses are satisfiable
if and only if the vertices not in S can be correctly colored. For each possible setting of the
Boolean variables x(u) and x(v) that would cause n(u) = n(v), we create a disjunction of x(u)
and x(v) that is false if it implies n(u) = n(v); for example, if x(u) = true and x(v) = false
implies that n(u) = n(v), then we create a clause (x(u) ∨ x(v)). Since G is 3-colorable, given a
correct coloring of S, there exists a setting of the variables x(v) which satisfies all the clauses.
Since each clause has two variables, it is possible to determine in polynomial time whether the
instance is satisfiable or not; we leave it as an exercise to the reader to prove this (Exercise
6.3). Obviously if we find a setting of the variables that satisfies all constraints, this implies a
correct coloring of the entire graph, whereas if the constraints are not satisfiable, our current
coloring of S must not have been correct.

In Section 12.4, we’ll revisit the idea from this section of drawing a small random sample of
a graph and using it to determine the overall solution for the maximum cut problem in dense
graphs.

Exercises

5.1 In the maximum k-cut problem, we are given an undirected graph G = (V,E), and non-
negative weights wij ≥ 0 for all (i, j) ∈ E. The goal is to partition the vertex set V into k
parts V1, . . . , Vk so as to maximize the weight of all edges whose endpoints are in different
parts (i.e. max(i,j)∈E:i∈Va,j∈Vb,a̸=bwij).

Give a randomized k−1
k -approximation algorithm for the MAX k-CUT problem.

5.2 Consider the following greedy algorithm for the maximum cut problem. We suppose the
vertices are numbered 1, . . . , n. In the first iteration, the algorithm places vertex 1 in U .
In the kth iteration of the algorithm, we will place vertex k in either U or inW . In order to
decide which choice to make, we will look at all the edges F that have the vertex k as one

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

136 Random sampling and randomized rounding of linear programs

endpoint and whose other endpoint is 1, . . . , k−1, so that F = {(j, k) ∈ E : 1 ≤ j ≤ k − 1}.
We choose to put vertex k in U or W depending on which of these two choices maximizes
the number of edges of F being in the cut.

(a) Prove that this algorithm is a 1/2-approximation algorithm for the maximum cut
problem.

(b) Prove that this algorithm is equivalent to the derandomization of the maximum cut
algorithm of Section 5.1 via the method of conditional expectations.

5.3 In the maximum directed cut problem (sometimes called MAX DICUT) we are given as
input a directed graph G = (V,A). Each directed arc (i, j) ∈ A has nonnegative weight
wij ≥ 0. The goal is to partition V into two sets U and W = V −U so as to maximize the
total weight of the arcs going from U to W (that is, arcs (i, j) with i ∈ U and j ∈ W).
Give a randomized 1

4 -approximation algorithm for this problem.

5.4 Consider the non-linear randomized rounding algorithm for MAX SAT as given in Section
5.6. Prove that using randomized rounding with the linear function f(yi) =

1
2yi +

1
4 also

gives a 3
4 -approximation algorithm for MAX SAT.

5.5 Consider the non-linear randomized rounding algorithm for MAX SAT as given in Section
5.6. Prove that using randomized rounding with the piecewise linear function

f(yi) =

3
4yi +

1
4 for 0 ≤ yi ≤ 1

3
1/2 for 1

3 ≤ yi ≤ 2
3

3
4yi for 2

3 ≤ yi ≤ 1

also gives a 3
4 -approximation algorithm for MAX SAT.

5.6 Consider again the maximum directed cut problem from Exercise 5.3.

(a) Show that the following integer program models the maximum directed cut problem:

maximize
∑

(i,j)∈A
wijzij

subject to zij ≤ xi, ∀(i, j) ∈ A,

zij ≤ 1− xj , ∀(i, j) ∈ A,

xi ∈ {0, 1} , ∀i ∈ V,

0 ≤ zij ≤ 1, ∀(i, j) ∈ A.

(b) Consider a randomized rounding algorithm for the maximum directed cut prob-
lem that solves a linear programming relaxation of the integer program and puts
vertex i ∈ U with probability 1/4 + xi/2. Show that this gives a randomized 1/2-
approximation algorithm for the maximum directed cut problem.

5.7 In this exercise, we consider how to derandomize the randomized rounding algorithm
for the set cover problem given in Section 1.7. We would like to apply the method of
conditional expectations, but we need to ensure that at the end of the process we obtain
a valid set cover. Let Xj be a random variable indicating whether set Sj is included in
the solution. Then if wj is the weight of set Sj , let W be the weight of the set cover

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

192 The primal-dual method

(d) Prove the local ratio theorem.

(e) Explain how the set cover algorithm above can be analyzed in terms of the local
ratio theorem to prove that it is an f -approximation algorithm.

Most of the algorithms of the chapter have local ratio variants.

7.4 In the 2-approximation algorithm for the generalized Steiner tree problem that we gave
in Section 7.4, we first add certain edges, then remove unnecessary edges in the order
opposite of the order in which they were added.

Prove that one can in fact remove unnecessary edges in any order and still obtain a 2-
approximation algorithm for the problem. That is, we replace the edge removal steps in
Algorithm 7.6 with a step that checks if there exists any edge e in F ′ such that F ′ − e is
feasible. If so, e is removed from F ′, and if not, F ′ is returned as the final solution. Prove
that

∑
e∈F ′ ce ≤ 2

∑
S yS for the dual y generated by the algorithm.

7.5 In the minimum-cost branching problem we are given a directed graph G = (V,A), a root
vertex r ∈ V , and weights wij ≥ 0 for all (i, j) ∈ A. The goal of the problem is to find a
minimum-cost set of arcs F ⊆ A such that for every v ∈ V , there is exactly one directed
path in F from r to v. Use the primal-dual method to give an optimal algorithm for this
problem.

7.6 Recall that in our algorithms of Sections 4.4 and 5.7 for the prize-collecting Steiner tree
problem, we used the following linear programming relaxation of the problem:

minimize
∑

e∈E
cexe +

∑

i∈V
πi(1− yi)

subject to
∑

e∈δ(S)
xe ≥ yi, ∀i ∈ S, ∀S ⊆ V − r, S ̸= ∅,

yr = 1,

yi ≥ 0, ∀i ∈ V,

xe ≥ 0, ∀e ∈ E.

Given an optimal solution (x∗, y∗) to the linear program, we then selected a set of vertices
U such that U = {i ∈ V : y∗i ≥ α} for some value of α > 0.

Give a primal-dual algorithm that finds a Steiner tree T on the set of terminals U such
that ∑

e∈T
ce ≤

2

α

∑

e∈E
cex

∗
e.

(Hint: you should not need to design a new primal-dual algorithm.)

7.7 In the k-path partition problem, we are given a complete, undirected graph G = (V,E)
with edge costs ce ≥ 0 that obey the triangle inequality (that is, c(u,v) ≤ c(u,w)+ c(w,v) for
all u, v, w ∈ V), and a parameter k such that |V | is a multiple of k. The goal is to find
a minimum-cost collection of paths of k vertices each such that each vertex is on exactly
one path.

A related problem is that of partitioning a graph into 0(mod k)-trees. The input to this
problem is the same as that above, except that the graph is not necessarily complete and

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

7.7 Lagrangean relaxation and the k-median problem 193

edge costs do not necessarily obey the triangle inequality. The goal is to find a minimum-
cost collection of trees such that each tree has 0(mod k) vertices, and each vertex is in
exactly one tree.

(a) Given an α-approximation algorithm for the second problem, produce a 2α
(
1− 1

k

)
-

approximation algorithm for the first.

(b) Use the primal-dual method to give a 2-approximation algorithm for the second
problem.

(c) Give a 4
(
1− 1

k

)
-approximation algorithm for the problem of partitioning a graph

into cycles of length exactly k.

7.8 Show that the performance guarantee of the primal-dual algorithm for the uncapacitated
facility location algorithm in Section 7.6 can be strengthened in the following way. Suppose
that the algorithm opens the set T ′ of facilities and constructs the dual solution (v, w).
Show that ∑

j∈D
min
i∈T ′

cij + 3
∑

i∈T ′
fi ≤ 3

∑

j∈D
vj .

7.9 Show that for the k-median problem as defined in Section 7.7, the optimal solution can
be found in polynomial time if the optimum cost OPTk = 0.

7.10 By using the method of conditional expectations, show that the randomized algorithm for
choosing k facilities in the k-median algorithm of Section 7.7 can be made deterministic.

Chapter Notes

The primal-dual method for approximation algorithms is a generalization of the primal-dual
method used for linear programming and combinatorial optimization problems such as the short-
est s-t path problem, the maximum flow problem, the assignment problem, the minimum-cost
branching problem, and others. For an overview of the primal-dual method and its application
to these problems, see Papadimitriou and Steiglitz [241]. Edmonds [96] gives the primal-dual
algorithm for the minimum-cost branching problem in Exercise 7.5. The idea of Section 7.3
that the shortest s-t path problem can be solved by an algorithm that greedily increases dual
variables is due to Hoffman [169]. Dijkstra’s algorithm for the same problem is due, of course,
to Dijkstra [89].

The first use of the primal-dual method for approximation algorithms is due to Bar-Yehuda
and Even [35]; they gave the algorithm of Section 7.1 for the set cover problem. Work in primal-
dual approximation algorithms was revived by work on the generalized Steiner tree problem
of Section 7.4. The first 2-approximation algorithm for the generalized Steiner tree problem is
due to Agrawal, Klein, and Ravi [4], and the algorithm presented in Section 7.4 is essentially
that of [4]. The use of linear programming and LP duality in the algorithm was made explicit
Goemans and Williamson [140], who extended the technique to other problems (such as the
k-path partition problem of Exercise 7.7). The idea of depicting dual variables as moats is due
to Jünger and Pulleyblank [182].

Several uses of the primal-dual method for approximation algorithms then followed. Bar-
Yehuda, Geiger, Naor, and Roth [37] gave the feedback vertex set algorithm of Section 7.2,
using Lemma 7.3, which is due to Erdős and Pósa [101]. Jain and Vazirani [179] developed the
primal-dual algorithm for the uncapacitated facility location problem and the use of Lagrangean

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

8.7 Spreading metrics, tree metrics, and linear arrangement 225

For each v ∈ V the sum telescopes to ln(Vd(v,∆))+ln(Vd(v,∆/2))−ln(Vd(v, 1))−ln(Vd(v, 1/2)),
which can be bounded above by 2(ln(Vd(v,∆))− ln(Vd(v, 0))). Thus this sum is at most

32
∑

v∈V
ln

(
Vd(v,∆)

Vd(v, 0)

)
g(v).

Then since Vd(v,∆) is at most V ∗, the entire volume, plus the extra V ∗/n term, while Vd(v, 0) =
V ∗/n,

32
∑

v∈V
ln

(
Vd(v,∆)

Vd(v, 0)

)
g(v) ≤ 32

∑

v∈V
ln

(
V ∗ + V ∗/n

V ∗/n

)
g(v) = 32 ln(n+ 1)

∑

v∈V
g(v).

Using the definition of g(v), we have that

32 ln(n+ 1)
∑

v∈V
g(v) = 32 ln(n+ 1)

∑

v∈V

(
V ∗

n
+

∑

u∈V
cuvduv

)
= 96 ln(n+ 1)

∑

u,v∈V
cuvduv,

so that ∑

u,v∈V
cuvTuv ≤ O(log n)

∑

u,v∈V
cuvduv,

as desired.

While we have gone to considerable lengths to give a deterministic algorithm to find a tree
metric T such that

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv, we can quite simply obtain a ran-

domized algorithm that finds such a tree metric with high probability given a randomized algo-
rithm for probabilistically approximating a metric by a tree metric with distortion O(log n). We
give this as an exercise (Exercise 8.12). The reverse direction can also be shown; given any de-
terministic algorithm to find a tree metric T such that

∑
u,v∈V cuvTuv ≤ O(log n)

∑
u,v∈V cuvduv,

we can obtain a randomized algorithm that can probabilistically approximate d by a tree metric
with distortion O(log n). We give the latter problem as an exercise later on in the book, once
we have a bit more experience with the ellipsoid method (Exercise 15.9).

Exercises

8.1 Prove that the analysis of the performance guarantee of the multiway cut algorithm of
Section 8.2 can be improved to 3

2 − 1
k .

8.2 Consider the following two permutations π1 and π2, where π1(1) = 1,π1(2) = 2, . . . ,π1(k) =
k, while π2(1) = k,π2(2) = k − 1, . . . ,π2(k) = 1. Consider a modification of Algorithm
8.1 in which we do not choose a random permutation π, but rather choose π = π1 with
probability 1/2 and π = π2 with probability 1/2. Show that the modified algorithm is
still a 3

2 -approximation algorithm for the multiway cut problem.

8.3 In the Steiner k-cut problem, we are given an undirected graph G = (V,E), costs ce ≥ 0
for all e ∈ E, a set of terminals T ⊆ V , and a positive integer k ≤ |T |. The goal of the
problem is to partition the vertices into k sets S1, . . . , Sk such that each set contains at
least one terminal (that is, Si ∩ T ̸= ∅ for i = 1, . . . , k) and to minimize the weight of the
edges with endpoints in different parts. Given a partition P = {S1, . . . , Sk}, let c(P) be
the total cost of the edges that have endpoints in different parts of the partition.

Electronic web edition. Copyright 2010 by David P. Williamson and David B. Shmoys.
To be published by Cambridge University Press

