CMSC 858K Advanced Algorithms Lecture 24
Lecturer: Samir Khuller May 1, 1997

Notes by Laura Bright.

50 Linear Programming: The Use of Duality

The Primal-Dual Method is a useful tool for solving combinatorial optimization problems. In this lecture
we first study Duality and see how it can be used to design an algorithm to solve the Assignment problem.
Dual Problem Motivation

The primal problem is defined as follows:

Maximize
n
§ : CjZj
Jj=1

subject to:
n
Vi € (1,...,m)2aijxj < b;
j=1

17]20

To formulate the dual, for each constraint introduce a new variable y;, multiply constraint ¢ by that
variable, and add all the constraints.

m n m
Z(Z aijT;)y; < Z biyi
i=1 j=1 i=1
Consider the coefficient of each ;.

m

> aiyi

i=1
If this coefficient is at least c;

m
¢; < E @ijYi
i=1

then we can use Y.~ b;y; as an upper bound on the maximum value of the primal LP.

n n m m
D ey <3 0O aiyi)r; <> by
Jj=1 j=1 i=1 =1

We want to derive the best upper bound for the dual so we wish to minimize this quantity.
Dual:

Minimize
m
E biy;
=1

subject to:
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m
V] S (1,...,n)2aijyi > Cj
i=1

yi >0

The constraint that each y; be positive is to preserve the inequalities of the primal problem. The
constraints of the primal problem could also be equality constraints, and in this case we can drop the
requirement that the y; values be positive. It is worth noting that if you take the dual of the dual problem,
you will get back the original primal problem.

We saw in the previous lecture that using the simplex method, you can find the optimal solution to a
primal problem if one exists. While the simplex certifies its own optimality, the dual solution can be used
to certify the optimality of any given primal solution. The Strong Duality Theorem proves this.

Theorem 50.1 (Strong Duality Theorem)
If the primal LP has an optimal solution x*, then the dual has an optimal solution y* such that:

n m

* Lk
g cjr; = E biy; -
j:l i=1

Proof:

To prove the theorem, we only need to find a (feasible) solution y* that satisfies the constraints of the
Dual LP, and satisfies the above equation with equality. We solve the primal program by the simplex method,
and introduce m slack variables in the process.

n
l‘nJri:bi— E AijTj (i:l,...,m)
j=1

Assume that when the simplex algorithm terminates, the equation defining z reads as:

z=2z"+ E CrLTp-
k=1

Since we have reached optimality, we know that each € is a nonpositive number (in fact, it is 0 for each
basic variable). In addition z* is the value of the objective function at optimality, hence z* = Z?Zl cjT
To produce y* we pull a rabbit out of a hat ! Define y¥ = —¢,4; (i=1,...,m).

To show that y* is an optimal dual feasible solution, we first show that it is feasible for the Dual LP, and
then establish the strong duality condition.

From the equation for z we have:

n n m n
Z cjrj =2"+ Zékmk - g yr(b; — Z aijT;).
j=1 k=1 i=1 j=1

*
-

Rewriting it, we get
n m

n m
chmj =(2* - Z biyl) + Z(Ej + Zaijy;‘)a:j.
j=1 i=1 j=1 i=1

Since this holds for all values of x;, we obtain:

2= by}
i=1
(this establishes the equality) and

m
¢ =%+ ayyi (G=1,...,n).
i=1
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Since ¢, < 0, we have
yr >0 (i=1,...,m).

m
Zaijy; >c¢; (j=1,...,n)
i=1

This establishes the feasibility of y*.
O

We have shown that the dual solution can be used to verify the optimality of a primal solution. Now we
will show how this is done using an example. F irst we introduce Complementary Slackness Conditions.

Complementary Slackness Conditions:

Theorem 50.2 Necessary and Sufficient conditions for x* and y* to be optimal solutions to the primal and
dual are as follows.

m
Zaijy; =cj orx; =0 (or both) for j=1,...,n
i=1

n
Zaijm; =b; ory; =0 (or both) fori=1,...,m
j=1

In other words, if a variable is non-zero then the corresponding equation in the dual is met with equality,
and vice versa.
Proof:

We know that

m
¢at < (Y ayyd)al  (=1,....n)
=1

n
O aga)y; <by;  (i=1,...,m)
j=1

We know that at optimality, the equations are met with equality. Thus for any value of j, either z; =0

or > 3;" | ajjyf = cj. Similarly, for any value of i, either y¥ = 0 or 37, a;;z} = b;. O

The following example illustrates how complementary slackness conditions can be used to certify the
optimality of a given solution.

Consider the primal problem:

Maximize

18x; — 7Txs + 12235 + 524 + 8z

subject to:
2x1 — 620 + 223 + Ty + 325 + 826 < 1
—3x1 —xy +4x3 — x4 + x5 + 206 < —2
8x1 — 3x9 + by — 214 + 226 < 4
41’14‘81’34‘71’4-1‘5 +31‘6 S 1
5x1 + 220 — 3x3 + 614 — 225 — 6 < D
T1,T2,T3,T4,T5,T6 ZO

We claim that the solution
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* * * * * *
] =225 =4,253 =0,y =0,25 =7,25 =0

is an optimal solution to the problem.

According to the first complementary slackness condition, for every strictly positive x value, the corre-
sponding dual constraint should be met with equality. Since the values 1, z2, and x5 are positive, the first,
second, and fifth dual constraints must be met with equality. Similarly, from the second complementary
slackness condition, we know that for every strictly positive y value, the corresponding primal constraint
should be met with equality. By substituting the given z values in the primal equations, we see that the
second and fifth equations are not met with equality. Therefore y» and y; must be equal to 0. The comple-
mentary slackness conditions therefore give us the following:

2y — 3ys + 8y; +4y; + 5y: =18

—6y7 —y5 —3ys +2y5 = -7
3yr +ys —ys —2y5 =0
y; =0
y; =0

Solving this system of equations gives us (%, 0, g, 1,0). By formulating the dual and substituting these

y values, it is easy to verify that this solution satisfies the constraints of the dual, and therefore our primal
solution must be optimal.

Note that this method of verifying solutions only works if the system of equations has a unique solution.
If it does not, it means that the dual is unbounded, and the primal problem is therefore infeasible. Similarly,
if the primal problem is unbounded, the dual is infeasible.

Assignment Problem

We can now revisit the weighted matching problem we studied earlier in the semester to see how the solution
to this problem can be derived using the primal-dual method. The Assignment Problem is, given a complete
bipartite graph with a weight w, assigned to each edge, to find a maximum weighted perfect matching.
Stated as a linear program, the problem is as follows:

Maximize
Zwea:e 1>z.,>0
subject to:

VueU > z.=1

e=(u,*)
VeV Y z.=1
e=(*,v)
The dual to this problem is:
Minimize

Y YVu+ > Y,

uwelU veV

subject to:

Y, +Y, > w(u,v) Vedges(u,v)
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Since all the constraints of the primal are met with equality, the second complementary slackness condition
is automatically satisfied. By the definition of complementary slackness, if we have a feasible primal solution
that satisfies the first complementary slackness condition, we are done.

In any feasible solution to the primal, every vertex has some edge e such that z, > 0. By the first
complementary slackness condition, if z7 > 0 then the corresponding dual constraint must be met with
equality. When we have a feasible primal solution such that Y, + Y, = w(u,v) for all edges e = (u,v)
such that z. > 0, we have an optimal solution to both problems. This suggests that only the edges in the
“equality subgraph” (edges for which the dual constraints are met with equality) should be considered when
we want to add edges to the matching. Also notice that the number of unmatched vertices is our “measure
of infeasibility” — as this decreases, we approach feasibility.

The labeling function [ on the vertices that we used earlier is nothing but the dual variables.

Hui) +1(v;) > w(ui,vj)

Start with a feasible labeling and compute the equality subgraph G; which includes all the vertices of
the original graph G but only edges (x;,y;) which have weights such that w(z;,y;) = l(z;) + (y;).

If G} is a perfect matching, we have an optimal solution. Otherwise, we revise the labels to improve the
quality of the matching.

The algorithm finds a maximum matching in the equality subgraph. We increase the labels of some
vertices and decrease the labels of others. The total sum of the labels is dropping, so we are decreasing our
dual solution. If we increase the size of the matching, we are one step closer to the optimal solution. When
an optimal labeling is found, we have an optimal solution to the dual, and we therefore have a maximum
weighted matching in G.
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