CMSC 858K Advanced Algorithms Lecture 01
Lecturer: Samir Khuller Jan 28, 1999

Original Notes by Charles Lin

10 Approximation Algorithms: Set Cover

10.1 Introduction

The goal of algorithm design is to develop efficient algorithms to solve problems. An algorithm is usually
considered efficient if its worst case running time on an instance of a problem is polynomial in the size of the
problem. However, there are problems where the best algorithms have running times which are exponential
(or worse) in the worst case. Most notably, the class of NP-hard problems currently have algorithms which
are exponential in the worst case.

The need to develop efficient algorithms has lead to the study of approximation algorithms. By relaxing
the optimality of the solution, polynomial algorithms have been developed that solve NP complete problems
to within a constant factor of an optimal solution.

10.2 Approximation Algorithms

We can formalize the notion of an approximation algorithm some more by considering what it means to
approximate a minimization problem. A minimization problem is one where the solution minimizes some
quantity under certain criteria. For example, vertex cover is usually considered a minimization problem.
Given a graph G, the goal is to find the fewest vertices that “cover” all edges.

Let P be the set of problem instances for a minimization problem. Let OPT be the optimal algorithm
for solving the problems in P. If the problem is vertex cover, then P contains all undirected graphs, and
OPT would find the minimum vertex cover for each of the instances. Let I € P be a problem instance.
Then, we will say that OPT'(I) is the minimum solution for I. For vertex cover, we can say that this is the
size of the minimum vertex cover.

An a-approximation algorithm A (we often refer to a as the approximation factor), approximates the
optimal solution as follows:

VI, A(I) < a OPT(I) where v > 1.

If there were a 2-approximation algorithm for vertex cover and the optimal solution for a given graph
had 3 vertices, then the approximate solution would do no worse than find a vertex cover with 6 vertices.
Note that an a-approximation algorithm only gives an upper bound to how far away the approximation is
from optimal. While there may exist problem instances as bad as « times the optimal, the algorithm may
produce solutions close to optimal for many problem instances.

Some a-approximation algorithms have a depend on the size of the input instance or some other property
of the input, whereas others produce approximations independent of the input size. Later on, for example,
we will consider an H (|Syqz|)-approximation algorithm where the approximation factor is a function of the
maximum set size in a collection of sets.

For a maximization problem, an a-approximation algorithm would satisfy the following formula:

VI, OPT(I) > A(I) > « OPT(I) wherea < 1.

10.3 Polynomial Approximation Schemes

For some problems, there are polynomial approximation schemes (PAS). PAS are actually a family of algo-
rithms that approximate the solution to a given problem as well as we wish. However, the closer the solution
is to the optimal, the longer it takes to find it. More formally, for any € > 0, there is an approximation
algorithm, A, such that

VI, A(I) < (1 +¢€) OPT(I)

23

There is a similar formula for maximization problems.

Although a problem may have a PAS, these schemes can have a very bad dependence on e. A PAS
can produce algorithms that are exponential in 1, e.g., O(n<). Notice that for any fixed €, the complexity
is polynomial. However, as e approaches zero, the polynomial grows very quickly. A fully polynomial
approximation scheme (FPAS) is one whose complexity is polynomial in both n (the problem size) and L.
Very few problems have a FPAS and those that do are often impractical because of their dependence on e.
Bin packing is one such example.

10.4 Set Cover

We will start by considering approximation algorithms for set cover, which is a very fundamental NP-complete
problem, as well as problems related to set cover.
The input to set cover are two sets, X and S.

X = {z1,22,...,2,}
S = {51,52,...,Sm} WhereSigX

We further assume that J s;es i = X. Hence, each element of X is in some set S;. A set cover is a subset
S’ C S such that

U si=x

S;eS’

The set cover problem attempts to find the minimum number of sets that cover the elements in X. A
variation of the problem assigns weights to each set of S. An optimal solution for this problem finds a set
cover with the least total weight. The standard set cover problem can then be seen as a weighted set cover
problem where the weights of each set are 1.

The set cover problem can also be described as the Hitting Set Problem. The formulation of the hitting
set, problem is different from set cover, but the problems are equivalent. In the hitting set problem, we have
a hypergraph, H = (V, E) where

V = {’Ul,'l}z,...,’l)n}
E {e1,€2,...,em}

In a normal graph, an edge is incident on two vertices. In a hypergraph, an edge can be incident on one or
more vertices. We can represent edges in a hypergraph as subset of vertices. Hence, e; C V for all e; € E.
In the Hitting Set Problem, the goal is to pick the fewest vertices which “cover” all hyperedges in H.
To show that that hitting set is equivalent to set cover, we can transform an instance of hitting set to
that of set cover.
X=F

S ={S1,8,...,5,}

where e € S; iff edge e € E touches vertex v;. For every vertex v; in V, there is a corresponding set S; in S.
The reverse transformation from set cover to hitting set is similar.

The Hitting Set Problem can be seen as a generalization of the vertex cover problem on graphs, to
hypergraphs. The two problems are exactly the same except that vertex cover adds the constraint that
edges touch exactly two vertices. Vertex cover can also be seen as a specialization of set cover where each
element of X appears in exactly two sets in S.

10.5 Approximating Set Cover

We will consider an approximation algorithm for set cover whose value for a is H (|Smqz|) Wwhere Spqz is the
largest set in S. H is the harmonic function and is defined as

24

A simple heuristic is to greedily pick sets from S. At each step, pick S; € S which contains the most
number of uncovered vertices. Repeat until all vertices are covered. The following is pseudo-code for that
greedy algorithm.

GREEDY-SET-COVER(X, S)
1 U+ X // U is the set of uncovered elements

2 S' 0 // S’ is the current set cover

3 while U #0 do

4 pick S; € S such that |S; NU| is maximized // pick set with most uncovered elements
5 S+ S'US;

6 U+U-5;

7

end

To show that the approximation factor is H(|Smaez|), we will use a “charging” scheme. The cost of
choosing a set is one (dollar). If we pick a set with k uncovered elements, each of the uncovered elements
will be charged % dollars. Since each element is covered only once, it is charged only once. The cost of the
greedy algorithm’s solution will be the total charge on all the elements.

Greedy Cost = »_ c(z:) < > C(Si) < |OPT|- H(|Smaz|)

z,€X S;€OPT

where ¢(z;) is the cost assigned to element x;. S; is a set in the optimum set cover. C(S;) is the cost of set
S; by summing the charges of the elements in S;. That is,

C(Si) =Y elxs)

z;€S;

c(x;) is still the cost assigned to z; from the greedy algorithm.
The inequality, >, .y c(®i) < X g copr C(Si), says that the cost of the optimum set cover is at least
the sum of the cost of the elements. We can see this more readily if we rewrite the cost of the optimum set

D> CSi) =Y elw)-n(w)

S;€eOPT T, €X

where n(x;) is the number of times element z; appears in the optimum set cover. Since each element appears
at least once, the inequality naturally follows.

To show the second inequality, > g copy C(Si) < [OPT|- H(|Smaz|), it suffices to show that C(S;) <
H(|S;|). The inequality would then hold as follows:

Yooy Y HISDE Y H(Smasl) = IOPT] - H(Smaal)-

S;€eOPT S;€OPT S:i€OPT

To show C(S;) < H(|Si|), consider an arbitrary set S; € S. As sets are being picked by the greedy
algorithm, we want to see what happens to the elements of S;. Let Uy be the set of uncovered elements in
S; when the algorithm starts. As sets are picked, elements of S; will be covered a piece at a time. Suppose
we are in the middle of running the algorithm. After j iterations, U; represents the uncovered elements of
S;. If the algorithm picks a set which covers elements in Uj, we write the new set of uncovered elements
as Uj41. Note that Uj;q is a proper subset of U;. Hence, Uy, Uy, ..., Uk, Ury1 is the history of uncovered
elements of S;, where Uyy1 = 0.

The following illustrates the history of uncovered elements in S;.

|Ug—U1 | |U1—Ua2|
— —

Us Uy Us...Us MU = 0

Above each arrow is the number of elements that were charged. Going from U; to Uj;1, the number of
elements charged is |U; — Uj41|. How much are these elements charged?

Suppose we are at the point in the algorithm where U; represents the set of uncovered elements in S;,
and the greedy algorithm is just about to pick a set. Assume that it picks a set which covers at least one
uncovered element in S; (otherwise, let the algorithm continue until this happens).

25

We want to show that the elements that get covered are charged no more than 1/|U;|. If it picks S;, then
each element in U; is charged exactly 1/|U;|. Let’s assume it doesn’t pick S;, but picks T instead. The only
reason it would pick T is if T had at least |U;| uncovered elements. In this case, each of uncovered elements
in T is charged at most 1/|T| < 1/|U;|.

By assumption, we said some elements of 1" overlap uncovered elements in S;. Specifically, T'N U; was
covered when T was picked. The total additional cost to S; from picking T is at most

1 1
T Je e = (Us —Uir) - ——
| ﬂU]' |U]| (UJ UJ+1) |U]|
The total cost charged to .S; is therefore
|U0—U1| |U1—U2| |Uk_Uk+1|
C(S;) < et —
R A A

Since Ug41 = 0, the last term simplifies to 1.
Each of the terms of sum have the form (z—y)/z for £ > y. The claim is that this is less than H (z)—H (y).
This can be shown by expanding H(z) and H (y).

Consider H(z) — H(y)
1 1 1 1
= (1+= Y= (14 = z
(+2+ +$) (+2+ +y)
1 1 1
T oy+1l y+2 T
1
> —qy) - =
> (@-y) -

The last equation comes from the fact that line 3 contains — y terms, each term being at least 1/z.
Using this fact, we can rewrite the total charge on S; as

C(S:)

IN

(H(U6l) — H(UD) + (V) = H(UaD) + ... + (H(ULD) = H(|Vesa])
= H(|Uo|) = H(|Ug+1|)
~ H(U)

Since Uy is just S;, then C(S;) < H(]Si])-

One might ask how tight can C(S;) be made? Suppose S; contains 5 elements. In one step 3 elements are
covered and in a subsequent step 2 more elements are covered. The cost of the set is at most % + % + % + % + %
which is less than H(5). Can we make C(S;) exactly equal to H(|S;|)? Yes, but only if at most one element
is covered in S; whenever the greedy algorithm picks a set to be added to the set cover.

Here is a scenario where Sy can be charged exactly H(|So|). Let S = {So,S1,...,Sm}. Let |S;| = j
(the size of the set is the subscript) except for Sy which has size m. Let Sop = {z1,...,Zm}. The sets
S1,...,Sm will have no elements in common. Each set only has one element in common with Sy. Specifically,
S;NSy = {.’L']} where j > 0.

If the greedy algorithm picks its set in the following order, S;,, Sm—1,...,S1, then C(Sp) will be exactly
H (|Sol)-

26

