Practice exam for CMSC131-04, Fall 2017

Q1 makePalindrome

- Relevant topics: arrays, loops

Write a method makePalidrome that takes an int array, return a new int array that contains
the values from the original array in their original order, followed by the elements from the
original array in reversed order.

For example, given [5, 4, 8], it will return the array [5, 4, 8, 8, 4, 5]. The original array should not
be modified.



Q2 countPairs

- Relevant topics: recursion, strings
- Note: From codingbat-1

Write a recursive method countPairs that takes a String and returns the number of pairs in the
string, where we’ll define a "pair" in a string is two instances of a char separated by a char. So
"AxA" the A's make a pair. Pair's can overlap, so "AxAxA" contains 3 pairs -- 2 for A and 1 for x.
Recursively compute the number of pairs in the given string. Do not use any looping constructs
or string methods other than length, charAt and substring.

Other example test cases:
e countPairs(“axa”) — 1
e countPairs("axax") — 2
e countPairs("axbx") — 1

Please complete the following about your implementation:

e Did you avoid using any loops (e.g., while loops or for loops)?

[]yes
[1 I didn’t read the instructions and am going to lose lots of points
e What is the base case?

e What are the recursive calls you make?

e In what way are the arguments to the recursive calls simpler?

Your solution (use extra paper if needed; this is only a practice exam)



Q3 selectStrings

- Relevant topics: List operations, iteration, String methods
Write a static method selectStrings that takes two arguments:

e Alist of Strings

e A string prefix
The selectStrings method returns a list of Strings containing just the strings from the list
provided as an argument that start with the provided prefix. The arguments should not be
modified. For example, given the arguments [‘CMSC132”, “MATH140”, “PSYC200",
“CMSC250”] and “CMSC?”, it should return [*CMSC132”, “CMSC250”].



Q4 Exception test from Lab on Dec 11th

- Relevant topics: Exceptions, try-catch-finally
Consider the following code:

public static void main(String args[]) {

try {
int [] a = {-3, 5, 10};

System.out.println(checkPositive(a, 9));
System.out.println(checkPositive(a, 9));
System.out.println(checkPositive(a, 9));
System.out.println(checkPositive(a, 9));
System.out.println(checkPositive(a, 9));

} catch (NullPointerException e) {
System.out.println("Null pointer exception");
} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("Array index out of bounds exception");
} finally {
System.out.println("finished");

private static boolean checkPositive(int[] a, int i) {

try {
return a[i] > 0;

} catch (ArrayIndexOutOfBoundsException e) {
System.out.println("index " is out of bounds");
return false;

} finally {

System.out.println("done");

}

}

+ 1+




Changed arguments for the 5 calls to checkPositive so that the output of this program is as
shown.

Expected output Which call Arguments to checkPositive call
done 1st
true
done 2nd
false
index 5 is out of bounds 3rd
done
false

4th
done
Null pointer exception
finished 5th




Q5 ints/double

- Relevant topics: integer vs floating point math, conversion between int and double

What does this code print?

double z = 3.9;
System.out.println(z);

int q = (int)z;
System.out.println(q);
System.out.println(q / 2 * z);
double w = 505 / 10+40.1;
System.out.println(w);

Print Output
statement

1st printin

2nd printin

3rd println

4th printin




Q6 Drawing Triangle

- Relevant topics: Loops, Nested loops, Manually throwing an exception

Write a method drawTriangle that will print out a right triangle whose length (height and width)
is represented by the integer parameter. Look at the examples for what your code should do. If
the length is less than zero, throw an lllegalArgumentException.

drawTriangle(4); *
drawTriangle(1); *
drawTriangle(5); *
drawTriangle(-1); IllegalArgumentException.



Q7 Design of class for Course
See description of Q7 on page 11

Provide just the constructors for course here; other methods on next page



Q7 Provide your implementations of addSection, equals and alllds() here



Q8 recursion mystery

Consider the following function.

static int mystery(int x) {
if (x == 0)
return 0;
return x%10 + mystery(x/10);

}

Show the calls to mystery in the order they are made. For each call, show the argument to
mystery and the value returned. Note: there are more rows than you will need.

Calls Values returned

mystery(567)




Q7 Design of class for Course (tear this page off if desired)

- Relevant topics: equals method, copy constructor, deep copy, ArraylLists

This is a simplified version of the course class from project 10. For purposes of this question,
the Course class has just three instance variables:

public class Course {
private String courseld;
private String name;
private ArraylList<Section> sections;

}

You can assume that appropriate getters are provided for those three instance variables.
You need to write the following:
e A constructor that takes two arguments, a courseId and a name, and initializes sections
to be empty.
e A copy constructor that performs a deep copy. Assume that the class Section has a
copy constructor that performs a deep copy.
e An instance method addSection that takes one Section as an argument and adds it to
the sections for the course.
e An appropriate equals method such that two Course‘s are equal if and only if their
courseld’s, name’s and section’s are equal.
o You do not need to implement hashCode
e A static method alllds() that takes no arguments and returns a TreeSet<String>
containing all of the courselds that were ever created. Define any static variables you
need to support this.

11



Reference for practice final, CMSC 131-04

The following includes all of the methods you will need to use for these questions, as well as
some you won't need.

String methods

int length();

boolean startsWith(String s);

boolean substring(int beginIndex, int endIndex);
char charAt(int i);

List<T> methods

int size();

boolean add(T t);

boolean contains(T t);

boolean remove(T t);

boolean removeAll(Collection<T> t);
T get(int i);

T set(int i, T value);

Set<T> methods

int size();

boolean add(T t);

boolean contains(T t);

boolean remove(T t);

boolean removeAll(Collection<T> t);

Map<K,V> methods
int size();
V get(K key);

// get the value with this key if it exists, if it doesn't return the defaultValue
V getOrDefault(K key, V defaultValue);

boolean containsKey(K k);
V put(K key, V value);
V remove(K key);

// return a set of the keys in the map
Set<K> keySet();

You can iterate through anything iterable, including an array, a List or a Set, using a "for
each" loop. For example, if names is declared as a Set<String>, you can use the following
code to print out all the Strings in that set:

for(String name : names) {
System.out.println(name);

}




