
CMSC 330: Organization of Programming
Languages

Safe, Low-level Programming with Rust

CMSC330 Fall 2019

What choice do programmers have today?

C/C++
• Low level
• More control
• Performance over safety
• Memory managed

manually
• No periodic garbage

collection
• …

Java, OCaml, Go, Ruby…
• High level
• Secure
• Less control
• Restrict direct access to memory
• Run-time management of memory

via periodic garbage collection
• No explicit malloc and free
• Unpredictable behavior due

to GC
• …

Rust: Type safety and low-level control

• Begun in 2006 by Graydon Hoare
• Sponsored as full-scale project and announced by Mozilla

in 2010
– Changed a lot since then; source of frustration
– But now: most loved programming language in Stack Overflow

annual surveys of 2016, 2017, and 2018

• Takes ideas from functional and OO languages, and
recent research

• Key properties: Type safety despite use of concurrency
and manual memory management
– And: No data races

Features of Rust
• Lifetimes and Ownership

– Key feature for ensuring safety
• Traits as core of object(-like) system
• Variable default is immutability
• Data types and pattern matching
• Type inference

– No need to write types for local variables
• Generics (aka parametric polymorphism)
• First-class functions
• Efficient C bindings

Rust in the real world
• Firefox Quantum and Servo components

– https://servo.org
• REmacs port of Emacs to Rust

– https://github.com/Wilfred/remacs
• Amethyst game engine

– https://www.amethyst.rs/
• Magic Pocket filesystem from Dropbox

– https://www.wired.com/2016/03/epic-story-dropboxs-exodus-
amazon-cloud-empire/

• OpenDNS malware detection components
• https://www.rust-lang.org/en-US/friends.html

https://servo.org
https://github.com/Wilfred/remacs
https://www.amethyst.rs/
https://www.wired.com/2016/03/epic-story-dropboxs-exodus-amazon-cloud-empire/
https://www.rust-lang.org/en-US/friends.html

Information on Rust

• Rust book free online
– https://doc.rust-lang.org/book/
– We will follow it in these lectures

• More references via Rust site
– https://www.rust-lang.org/en-

US/documentation.html
• Rust Playground (REPL)

– https://play.rust-lang.org/

https://doc.rust-lang.org/book/
https://www.rust-lang.org/en-US/documentation.html
https://play.rust-lang.org/

Installing Rust

• Instructions, and stable installers, here:

• On a Mac or Linux (VM), open a terminal and run

• On Windows, download+run rustup-init.exe

7

https://www.rust-lang.org/en-US/install.html

curl https://sh.rustup.rs -sSf | sh

https://static.rust-lang.org/rustup/dist/i686-pc-windows-
gnu/rustup-init.exe

8

Rust compiler, build system

• Rust programs can be compiled using rustc
– Source files end in suffix .rs
– Compilation, by default, produces an executable

• No –c option

• Preferred: Use the cargo package manager
– Will invoke rustc as needed to build files
– Will download and build dependencies
– Based on a .toml file and .lock file

• You won’t have to mess with these for this class
– Like ocamlbuild or dune

9

Using rustc

• Compiling and running a program

% rustc main.rs
% ./main
Hello, world!
%

fn main() {
println!("Hello, world!”)

}

main.rs:

10

Using cargo

• Make a project, build it, run it
% cargo new hello_cargo --bin
% cd hello_cargo
% ls
Cargo.toml src/
% ls src
main.rs
% cargo build
Compiling hello_cargo v0.1.0 (file:///…)
Finished dev [unoptimized + debuginfo] …
% ./target/debug/hello_cargo
Hello, world!

fn main() {
println!("Hello, world!”)

}

More at https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

https://doc.rust-lang.org/stable/cargo/getting-started/first-steps.html

Rust, interactively

11

• Rust has no top-level a la OCaml or Ruby
• There is an in-browser execution environment

– See, for example, https://doc.rust-lang.org/stable/rust-by-example/hello.html

https://doc.rust-lang.org/stable/rust-by-example/hello.html

Rust Documentation

• Your go-to to learn about Rust is the Rust documentation
page
– https://doc.rust-lang.org/stable/

• This contains links to
– the Rust Book (on which most of our slides are based),
– the reference manual, and
– short manuals on the compiler, cargo, and more

12

https://doc.rust-lang.org/stable/

Rust Basics

Functions

// comment
fn main() {

println!(“Hello, world!”);
}

Hello, world!

15

Factorial in Rust (recursively)
fn fact(n:i32) -> i32
{
if n == 0 { 1 }
else {
let x = fact(n-1);
n * x

}
}

fn main() {
let res = fact(6);
println!(“fact(6) = {}”,res);

}

fact(6) = 720

If Expressions (not Statements)

16

fn main() {
let n = 5;
if n < 0 {

print!("{} is negative", n);
} else if n > 0 {

print!("{} is positive", n);
} else {

print!("{} is zero", n);
}

}

5 is positive

Let Statements

• By default, Rust variables are immutable
– Usage checked by the compiler

• mut is used to declare a resource as mutable.

fn main() {
let mut a: i32 = 0;
a = a + 1;
println!("{}" , a);

}

fn main() {
let a: i32 = 0;
a = a + 1;
println!("{}" , a);

}

Compile error

Let Statements
fn main() {
let x = 5;

let x: i32 = 5; //type annotation

let mut x = 5; //mutable x: i32
x = 10;

}

18

If Expressions

19

fn main() {
let n = 5;
let x = if n < 0 {

10
} else {

"a"
};

print!("{:?}|",x);
}

Type error

20

Let Statement Usage Examples
{

let x = 37;
let y = x + 5;
y

}//42

{
let x = 37;
let x = x + 5;
x

}//42

{
let x = 37;
x = x + 5;//err
x

}

{
let mut x = 37;
x = x + 5;
x

}//42

{ //err:
let x:u32 = -1;
let y = x + 5;
y

}

{
let x:i16 = -1;
let y:i16 =

x+5;
y

}//4

Redefining a
variable shadows
it (like OCaml)

Assigning to a
variable only
allowed if mut

Type annotations
must be
consistent (may
override defaults)

A. 6
B. 7
C. 5
D. Error

{ let x = 6;
let y = "hi";
if x == 5 { y } else { 5 };
7

}

21

Quiz 1: What does this evaluate to?

A. 6
B. 7
C. 5
D. Error – if and else have incompatible types

{ let x = 6;
let y = "hi";
if x == 5 { y } else { 5 };
7

}

22

Quiz 1: What does this evaluate to?

A. 6
B. true
C. false
D. error

{ let x = 6;
let y = 4;
let x = 8;
x == 10-y

}

23

Quiz 2: What does this evaluate to?

A. 6
B. true
C. false
D. error

{ let x = 6;
let y = 4;
let x = 8;
x == 10-y

}

24

Quiz 2: What does this evaluate to?

25

Using Mutation

• Mutation is useful when performing iteration
– As in C and Java

infinite loop
(break out)

fn fact(n: u32) -> u32 {
let mut x = n;
let mut a = 1;
loop {
if x <= 1 { break; }
a = a * x;
x = x - 1;

}
a

}

Other Looping Constructs

• While loops
– while e block

• For loops
– for pat in e block

• More later – e.g., for iterating through collections

26

for x in 0..10 {
println!("{}", x); // x: i32

}

Other Looping Constructs

• These (and loop) are expressions
– They return the final computed value

• unit, if none
– break may take an expression argument, which is the final result

of the loop

27

let mut x = 5;
let y = loop {

x += x - 3;
println!("{}", x);// 7 11 19 35
x % 5 == 0 { break x; }

};
print!("{}",y); //35

A. 1
B. 6
C. 0
D. error

let mut x = 1;
for i in 1..6 {

let x = x + 1;
}
x

28

Quiz 3: What does this evaluate to?

A. 1
B. 6
C. 0
D. error

let mut x = 1;
for i in 1..6 {

let x = x + 1;
}
x

29

Quiz 3: What does this evaluate to?

Data: Scalar Types
• Integers

– i8, i16, i32, i64, isize
– u8, u16, u32, u64, usize

• Characters (unicode)
– char

• Booleans
– bool = { true, false }

• Floating point numbers
– f32, f64

• Note: arithmetic operators (+, -, etc.) overloaded

30

Defaults (from inference)

Machine word size

Compound Data: Tuples
• Tuples

– n-tuple type (t1,…,tn)
• unit () is just the 0-tuple

– n-tuple expression(e1,…,en)
– Accessed by pattern matching or like a record field

31

let tuple = ("hello", 5, 'c’);
assert_eq!(tuple.0, "hello");
let(x,y,z) = tuple;

fn dist(s:(f64,f64),e:(f64,f64)) -> f64 {
let (sx,sy) = s;
let ex = e.0;
let ey = e.1;
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy).sqrt()

}

32

Compound Data: Tuples
Distance between two points s:(x1,y1) e:(x2,y2)

fn dist2((sx,sy):(f64,f64),(ex,ey):(f64,f64)) -> f64 {
let dx = ex - sx;
let dy = ey - sy;
(dx*dx + dy*dy).sqrt()

}

33

Compound Data: Tuples
Can include patterns in parameters directly, too

We’ll see Rust structs later. They generalize tuples.

Arrays
• Standard operations

– Creating an array (can be mutable or not)
• But must be of fixed length

– Indexing an array
– Assigning at an array index

34

let nums = [1,2,3];
let strs = ["Monday","Tuesday","Wednesday"];
let x = nums[0]; // 1
let s = strs[1]; // "Tuesday"
let mut xs = [1,2,3];
xs[0] = 1; // OK, since xs mutable
let i = 4;
let y = nums[i]; //fails (panics) at run-time

Array Iteration

• Rust provides a way to iterate over a collection
– Including arrays

– a.iter() produces an iterator, like a Java iterator
• This is a method call, a la Java. More about these later

– The special for syntax issues the .next() call until
no elements are left

• No possibility of running out of bounds

35

let a = [10, 20, 30, 40, 50];
for element in a.iter() {

println!("the value is: {}", element);
}

fn f(n:[u32]) -> u32 {
n[0]

}

36

Quiz 4: Will this function type check?

A. Yes
B. No

A. Yes
B. No – because

array length not
known

fn f(n:[u32]) -> u32 {
n[0]

}

37

Quiz 4: Will this function type check?

Fun Fact

• The original Rust compiler was written in OCaml

– Betrays the sentiments of the language’s designers!

• Now the Rust compiler is written in … Rust

– How is this possible? Through a process called bootstrapping:

• The first Rust compiler written in Rust is compiled by the Rust compiler

written in OCaml

• Now we can use the binary from the Rust compiler to compile itself

• We discard the OCaml compiler and just keep updating the binary through

self-compilation

• So don’t lose that binary! J

38

