CMSC 330: Organization of Programming Languages

Regular Expressions and Finite Automata
How do regular expressions work?

- What we’ve learned
 - What regular expressions are
 - What they can express, and cannot
 - Programming with them

- What’s next: how they work
 - A great computer science result
A Few Questions About REs

- How are REs implemented?
 - Given an arbitrary RE and a string, how to decide whether the RE matches the string?

- What are the basic components of REs?
 - Can implement some features in terms of others
 - E.g., e+ is the same as ee*

- What does a regular expression represent?
 - Just a set of strings
 - This observation provides insight on how we go about our implementation

- … next comes the math!
Definition: Alphabet

- An alphabet is a finite set of symbols
 - Usually denoted Σ

Example alphabets:
- Binary: $\Sigma = \{0, 1\}$
- Decimal: $\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
- Alphanumeric: $\Sigma = \{0-9, a-z, A-Z\}$
A **string** is a finite sequence of symbols from Σ

- ϵ is the empty string ("") in Ruby
- $|s|$ is the length of string s
 - $|\text{Hello}| = 5, |\epsilon| = 0$

- **Note**
 - \emptyset is the empty set (with 0 elements)
 - $\emptyset \neq \{ \epsilon \}$ (and $\emptyset \neq \epsilon$)

Example strings over alphabet $\Sigma = \{0, 1\}$ (binary):

- 0101
- 0101110
- ϵ
Definition: Language

- A language L is a set of strings over an alphabet.

- Example: All strings of length 1 or 2 over alphabet $\Sigma = \{a, b, c\}$ that begin with a
 - $L = \{ a, aa, ab, ac \}$

- Example: All strings over $\Sigma = \{a, b\}$
 - $L = \{ \varepsilon, a, b, aa, bb, ab, ba, aaa, bba, aba, baa, \ldots \}$
 - Language of all strings written Σ^*

- Example: All strings of length 0 over alphabet Σ
 - $L = \{ s \mid s \in \Sigma^* \text{ and } |s| = 0 \}$
 - “the set of strings s such that s is from Σ^* and has length 0”
 - $= \{ \varepsilon \} \neq \emptyset$
Definition: Language (cont.)

Example: The set of phone numbers over the alphabet \(\Sigma = \{0, 1, 2, 3, 4, 5, 6, 7, 9, (,), -\} \)
 • Give an example element of this language (123) 456–7890
 • Are all strings over the alphabet in the language? No
 • Is there a Ruby regular expression for this language?
 \(/(\{d\{3,3\}\}\{d\{3,3\}\}-%\{d\{4,4\}\}/\)"

Example: The set of all valid (runnable) Ruby programs
 • Later we’ll see how we can specify this language
 • (Regular expressions are useful, but not sufficient)
Operations on Languages

- Let Σ be an alphabet and let L, L_1, L_2 be languages over Σ

- **Concatenation** L_1L_2 is defined as
 - $L_1L_2 = \{ xy | x \in L_1 \text{ and } y \in L_2 \}$

- **Union** is defined as
 - $L_1 \cup L_2 = \{ x | x \in L_1 \text{ or } x \in L_2 \}$

- **Kleene closure** is defined as
 - $L^* = \{ x | x = \epsilon \text{ or } x \in L \text{ or } x \in LL \text{ or } x \in LLL \text{ or } \ldots \}$
Operations Examples

Let \(L_1 = \{ a, b \} \), \(L_2 = \{ 1, 2, 3 \} \) (and \(\Sigma = \{a,b,1,2,3\} \))

- **What is \(L_1 L_2 \)?**
 - \(\{ a1, a2, a3, b1, b2, b3 \} \)

- **What is \(L_1 \cup L_2 \)?**
 - \(\{ a, b, 1, 2, 3 \} \)

- **What is \(L_1^* \)?**
 - \(\{ \epsilon, a, b, aa, bb, ab, ba, aaa, aab, bba, bbb, aba, abb, baa, bab, \ldots \} \)
Quiz 1: Which string is not in L_3

$L_1 = \{a, \ ab, \ c, \ d, \ \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 1: Which string is not in L_3

$L_1 = \{a, \text{ab}, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1 \cup L_2$

A. a
B. abd
C. ε
D. d
Quiz 2: Which string is not in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ where $\Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Quiz 2: Which string is **not** in L_3

$L_1 = \{a, ab, c, d, \varepsilon\}$ \hspace{1cm} \text{where } \Sigma = \{a,b,c,d\}$
$L_2 = \{d\}$
$L_3 = L_1(L_2^*)$

A. a
B. abd
C. adad
D. abdd
Regular Expressions: Grammar

- Similarly to how we expressed Micro-OCaml we can define a grammar for regular expressions R

\[
R ::= \emptyset \quad \text{The empty language} \\
| \varepsilon \quad \text{The empty string} \\
| \sigma \quad \text{A symbol from alphabet } \Sigma \\
| R_1 R_2 \quad \text{The concatenation of two regexps} \\
| R_1 | R_2 \quad \text{The union of two regexps} \\
| R^* \quad \text{The Kleene closure of a regexp}
\]
Regular Languages

- Regular expressions denote languages. These are the regular languages
 - *aka* regular sets

- Not all languages are regular
 - Examples (without proof):
 - The set of palindromes over Σ
 - $\{a^n b^n \mid n > 0\}$ (a^n = sequence of n a’s)

- Almost all programming languages are not regular
 - But aspects of them sometimes are (e.g., identifiers)
 - Regular expressions are commonly used in parsing tools
Semantics: Regular Expressions (1)

- Given an alphabet Σ, the regular expressions over Σ are defined inductively as follows

 Constants

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>\emptyset</td>
<td>\emptyset</td>
</tr>
<tr>
<td>ε</td>
<td>${\varepsilon}$</td>
</tr>
<tr>
<td>each symbol $\sigma \in \Sigma$</td>
<td>${\sigma}$</td>
</tr>
</tbody>
</table>

 *Ex: with $\Sigma = \{ a, b \}$, regex a denotes language $\{a\}$
 regex b denotes language $\{b\}$*
Let A and B be regular expressions denoting languages L_A and L_B, respectively. Then:

Operations

<table>
<thead>
<tr>
<th>regular expression</th>
<th>denotes language</th>
</tr>
</thead>
<tbody>
<tr>
<td>AB</td>
<td>$L_A L_B$</td>
</tr>
<tr>
<td>$A</td>
<td>B$</td>
</tr>
<tr>
<td>A^*</td>
<td>L_A^*</td>
</tr>
</tbody>
</table>

There are no other regular expressions over Σ
Terminology etc.

- Regexps apply operations to symbols
 - Generates a set of strings (i.e., a language)
 - (Formal definition shortly)
 - Examples
 - a generates language \{a\}
 - $a|b$ generates language \{a\} \cup \{b\} = \{a, b\}
 - a^* generates language \{\epsilon\} \cup \{a\} \cup \{aa\} \cup ... = \{\epsilon, a, aa, ... \}

- If $s \in$ language L generated by a RE r, we say that r accepts, describes, or recognizes string s
Precedence

Order in which operators are applied is:

• Kleene closure $\ast >$ concatenation $>$ union \mid
• $ab\mid c = (a\ b) \mid c \rightarrow \{ab, c\}$
• $ab\ast = a\ (b\ast) \rightarrow \{a, ab, abb \ldots\}$
• $a\mid b\ast = a \mid (b\ast) \rightarrow \{a, \epsilon, b, bb, bbb \ldots\}$

We use parentheses () to clarify

• E.g., $a(b\mid c), (ab)\ast, (a\mid b)\ast$
• Using escaped $\\backslash$(if parens are in the alphabet
Ruby Regular Expressions

- Almost all of the features we’ve seen for Ruby REs can be reduced to this formal definition
 - /Ruby/ – concatenation of single-symbol REs
 - /(Ruby|Regular)/ – union
 - /(Ruby)*/ – Kleene closure
 - /(Ruby)+/ – same as (Ruby)(Ruby)*
 - /(Ruby)?/ – same as (ε|(Ruby))
 - /[a-z]/ – same as (a|b|c|...|z)
 - /[^0-9]/ – same as (a|b|c|...) for a,b,c,... ∈ Σ - {0..9}
 - ^, $ – correspond to extra symbols in alphabet

- Think of every string containing a distinct, hidden symbol at its start and at its end – these are written ^ and $
Implementing Regular Expressions

- We can implement a regular expression by turning it into a **finite automaton**
 - A “machine” for recognizing a regular language
Finite Automaton

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton

- Machine starts in start or initial state
- Repeat until the end of the string s is reached
 - Scan the next symbol $\sigma \in \Sigma$ of the string s
 - Take transition edge labeled with σ
- String s is accepted if automaton is in final state when end of string s is reached

Elements
- States S (start, final)
- Alphabet Σ
- Transition edges δ
Finite Automaton: States

- **Start state**
 - State with incoming transition from no other state
 - Can have only one start state

- **Final states**
 - States with double circle
 - Can have zero or more final states
 - Any state, including the start state, can be final
Finite Automaton: Example 1

Accepted? Yes
Finite Automaton: Example 2

0 0 1 0 1 0

Accepted?
No
Quiz 3: What Language is This?

A. All strings over \{0, 1\}
B. All strings over \{1\}
C. All strings over \{0, 1\} of length 1
D. All strings over \{0, 1\} that end in 1
Quiz 3: What Language is This?

A. All strings over \(\{0, 1\} \)
B. All strings over \(\{1\} \)
C. All strings over \(\{0, 1\} \) of length 1
D. All strings over \(\{0, 1\} \) that end in 1

regular expression for this language is \((0|1)^*1\)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>aabcc</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>acca</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td></td>
<td>?</td>
</tr>
</tbody>
</table>
Finite Automaton: Example 3

(a,b,c notation shorthand for three self loops)

<table>
<thead>
<tr>
<th>string</th>
<th>state at end</th>
<th>accepts</th>
</tr>
</thead>
<tbody>
<tr>
<td>aacbbb</td>
<td>S3</td>
<td>N</td>
</tr>
</tbody>
</table>
Quiz 4: Which string is not accepted?

A. bcca
B. abbbc
C. ccc
D. ε

(a,b,c notation shorthand for three self loops)
Quiz 4: Which string is not accepted?

A. bccca
B. abbbbc
C. ccc
D. ε

(a,b,c notation shorthand for three self loops)
Finite Automaton: Example 3

What language does this FA accept?

\[a^*b^*c^* \]

S3 is a dead state – a nonfinal state with no transition to another state - aka a trap state
Finite Automaton: Example 4

Language?

\(a^*b^*c^* \) again, so FAs are not unique
Dead State: Shorthand Notation

- If a transition is omitted, assume it goes to a dead state that is not shown

Language?
- Strings over \{0,1,2,3\} with alternating even and odd digits, beginning with odd digit
Description for each state

- **S0** = “Haven't seen anything yet” OR “Last symbol seen was a b”
- **S1** = “Last symbol seen was an a”
- **S2** = “Last two symbols seen were ab”
- **S3** = “Last three symbols seen were abb”
Finite Automaton: Example 5

Language as a regular expression?

(a|b)*abb
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Over $\Sigma=\{a,b\}$, this FA accepts only:

A. A string that contains a single a.
B. Any string in $\{a,b\}$.
C. A string that starts with b followed by a’s.
D. Zero or more b’s, followed by one or more a’s.
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
- That accepts strings with an odd number of 1s
- That accepts strings containing an even number of 0s and any number of 1s
- That accepts strings containing an odd number of 0s and odd number of 1s
- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings with an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an even number of 0s and any number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings containing two consecutive 0s very immediately (right after, no other things in between) followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0, 1\}$

- That accepts strings end with two consecutive 0s followed by two consecutive 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an odd number of 0s and odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings containing an **odd** number of 0s and **odd** number of 1s

4 states:

0s 1s
- e e e
- o e e
- e o o
- o o o
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that DO NOT contain odd number of 0s and an odd number of 1s
Exercises: Define an FA over $\Sigma = \{0,1\}$

- That accepts strings that **DO NOT** contain odd number of 0s and an odd number of 1s

Flip each state