CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
Goal: Develop an algorithm that determines whether a string \(s \) is matched by regex \(R \)
- I.e., whether \(s \) is a member of \(R \)’s language

Approach: Convert \(R \) to a finite automaton \(FA \) and see whether \(s \) is accepted by \(FA \)
- Details: Convert \(R \) to a nondeterministic FA (NFA), which we then convert to a deterministic FA (DFA),
 - which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - I.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA

\[\varepsilon \rightarrow \text{\varepsilon-transition} \]
DFA for (a|b)*abb
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either S0 or S1
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to S3, so accepts string
NFA for \((ab|aba)^*\)

- **aba**
 - Has paths to states \(S0, S1\)

- **ababa**
 - Has paths to \(S0, S1\)
 - Need to use \(\varepsilon\)-transition
Comparing NFA and DFA for (ab|aba)*

DFA

NFA
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above

CMSC 330 Fall 2019
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma\) is an alphabet
 - \(Q\) is a nonempty set of states
 - \(q_0 \in Q\) is the start state
 - \(F \subseteq Q\) is the set of final states
 - \(\delta: Q \times \Sigma \rightarrow Q\) specifies the DFA's transitions

 Ð What's this definition saying that \(\delta\) is?

- A DFA accepts \(s\) if it stops at a final state on \(s\)
Formal Definition: Example

• $\Sigma = \{0, 1\}$
• $Q = \{S_0, S_1\}$
• $q_0 = S_0$
• $F = \{S_1\}$

or as $\{(S_0,0,S_0),(S_0,1,S_1),(S_1,0,S_0),(S_1,1,S_1)\}$
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA:

```
cur_state = 0;
while (1) {
    symbol = getchar();
    switch (cur_state) {
        case 0: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\'n': printf("rejected\n"); return 0;
            default: printf("rejected\n"); return 0;
        }
        break;
        case 1: switch (symbol) {
            case '0': cur_state = 0; break;
            case '1': cur_state = 1; break;
            case '\'n': printf("accepted\n"); return 1;
            default: printf("rejected\n"); return 0;
        }
        break;
        default: printf("unknown state; I'm confused\n");
    }
}
```
Implementing DFAs (generic)

More generally, use generic table-driven DFA

\[
\text{given components } (\Sigma, Q, q_0, F, \delta) \text{ of a DFA:}
\]

\[
\text{let } q = q_0
\]

\[
\text{while (there exists another symbol } \sigma \text{ of the input string)}
\]

\[
q := \delta(q, \sigma);
\]

\[
\text{if } q \in F \text{ then}
\]

\[
\text{accept}
\]

\[
\text{else reject}
\]

- \text{q is just an integer}
- \text{Represent } \delta \text{ using arrays or hash tables}
- \text{Represent } F \text{ as a set}
Nondeterministic Finite Automata (NFA)

- An NFA is a 5-tuple \((\Sigma, Q, q_0, F, \delta)\) where
 - \(\Sigma, Q, q_0, F\) as with DFAs
 - \(\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q\) specifies the NFA's transitions

Example

- \(\Sigma = \{a\}\)
- \(Q = \{S1, S2, S3\}\)
- \(q_0 = S1\)
- \(F = \{S3\}\)
- \(\delta = \{ (S1,a,S1), (S1,a,S2), (S2,\varepsilon,S3) \}\)

An NFA accepts \(s\) if there is at least one path via \(s\) from the NFA’s start state to a final state

CMSC 330 Fall 2019
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states $S1$, $S2$, $S3$
 - Since $S3$ is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”
Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall $F =$ set of final states

- Will define $<A>$ for base cases: σ, ε, \emptyset
 - Where σ is a symbol in Σ
- And for inductive cases: AB, $A|B$, A^*
Reducing Regular Expressions to NFAs

- Base case: σ

Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is the alphabet
 - Q is set of states
 - q_0 is starting state
 - F is set of final states
 - δ is transition relation

$<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$
Reduction

- **Base case:** ε

 \[<\varepsilon> = (\emptyset, \{S_0\}, S_0, \{S_0\}, \emptyset)\]

- **Base case:** \emptyset

 \[<\emptyset> = (\emptyset, \{S_0, S_1\}, S_0, \{S_1\}, \emptyset)\]
Reduction: Concatenation

Induction: AB

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Concatenation

- Induction: AB

\[<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)\]
\[= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)\]
\[<AB> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \varepsilon, q_B)\})\]
Reduction: Union

Induction: $A|B$

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: $A|B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $<A|B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\})$
Reduction: Closure

- Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

Induction: A^*

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $<A^*> = (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\},$
 \[\delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\})\]
Quiz 2: Which NFA matches a^*?
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
Reduction Complexity

- Given a regular expression A of size n...

 Size = # of symbols + # of operations

- How many states does $<A>$ have?

 • Two added for each \mid, two added for each $*$
 • $O(n)$
 • That’s pretty good!
Reducing NFA to DFA
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

Algorithm

- Input
 - NFA ($\Sigma, Q, q_0, F_n, \delta$)

- Output
 - DFA ($\Sigma, R, r_0, F_d, \delta$)

- Using two subroutines
 - ε-closure(δ, p) (and ε-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

- We say \(p \xrightarrow{\varepsilon} q \)
 - If it is possible to go from state \(p \) to state \(q \) by taking only \(\varepsilon \)-transitions in \(\delta \)
 - If \(\exists p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 - \(\{p,\varepsilon,p_1\} \in \delta \), \(\{p_1,\varepsilon,p_2\} \in \delta \), \ldots, \(\{p_n,\varepsilon,q\} \in \delta \)

- **ε-closure(\(\delta \), \(p \))**
 - Set of states reachable from \(p \) using \(\varepsilon \)-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) = \{ \(q \mid p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - \(\varepsilon \)-closure(\(\delta \), \(Q \)) = \{ \(q \mid p \in Q, p \xrightarrow{\varepsilon} q \) in \(\delta \) \}
 - **Notes**
 - \(\varepsilon \)-closure(\(\delta \), \(p \)) always includes \(p \)
 - We write \(\varepsilon \)-closure(\(p \)) or \(\varepsilon \)-closure(\(Q \)) when \(\delta \) is clear from context
ε-closure: Example 1

- Following NFA contains
 - $p_1 \xrightarrow{\varepsilon} p_2$
 - $p_2 \xrightarrow{\varepsilon} p_3$
 - $p_1 \xrightarrow{\varepsilon} p_3$

- Since $p_1 \xrightarrow{\varepsilon} p_2$ and $p_2 \xrightarrow{\varepsilon} p_3$

- **ε-closures**
 - ε-closure(p_1) = \{ p_1, p_2, p_3 \}
 - ε-closure(p_2) = \{ p_2, p_3 \}
 - ε-closure(p_3) = \{ p_3 \}
 - ε-closure(\{ p_1, p_2 \}) = \{ p_1, p_2, p_3 \} \cup \{ p_2, p_3 \}
ε-closure: Example 2

Following NFA contains

- p1 $\xrightarrow{\varepsilon}$ p3
- p3 $\xrightarrow{\varepsilon}$ p2
- p1 $\xrightarrow{\varepsilon}$ p2

Since p1 $\xrightarrow{\varepsilon}$ p3 and p3 $\xrightarrow{\varepsilon}$ p2

ε-closures

- ε-closure(p1) = \{ p1, p2, p3 \}
- ε-closure(p2) = \{ p2 \}
- ε-closure(p3) = \{ p2, p3 \}
- ε-closure(\{ p2, p3 \}) = \{ p2 \} \cup \{ p2, p3 \}
ε-closure Algorithm: Approach

Input: NFA (Σ, Q, q_0, F_n, δ), State Set R
Output: State Set R'

Algorithm

Let $R' = R$ // start states
Repeat
 Let $R = R'$ // continue from previous
 Let $R' = R \cup \{ q \mid p \in R, (p, \epsilon, q) \in \delta \}$ // new ϵ-reachable states
Until $R = R'$ // stop when no new states

This algorithm computes a fixed point
ε-closure Algorithm Example

Calculate ε-closure(δ, {p1})

<table>
<thead>
<tr>
<th></th>
<th>R</th>
<th>R'</th>
</tr>
</thead>
<tbody>
<tr>
<td>{p1}</td>
<td>{p1}</td>
<td></td>
</tr>
<tr>
<td>{p1}</td>
<td>{p1, p2}</td>
<td></td>
</tr>
<tr>
<td>{p1, p2}</td>
<td>{p1, p2, p3}</td>
<td></td>
</tr>
<tr>
<td>{p1, p2, p3}</td>
<td>{p1, p2, p3}</td>
<td></td>
</tr>
</tbody>
</table>

Let $R' = R$
Repeat
Let $R = R'$
Let $R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}$
Until $R = R'$
Calculating move(p,σ)

move(δ,p,σ)

- **Set of states** reachable from p using exactly one transition on symbol σ
 - Set of states q such that \{p, σ, q\} ∈ δ
 - \(move(δ,p,σ) = \{ q | \{p, σ, q\} ∈ δ \}\)
 - \(move(δ,Q,σ) = \{ q | p ∈ Q, \{p, σ, q\} ∈ δ \}\)
 - i.e., can “lift” move() to a set of states Q

Notes:
- \(move(δ,p,σ)\) is ∅ if no transition \(p,σ,q\) ∈ δ, for any q
- We write move(p,σ) or move(R,σ) when δ clear from context
move(p, σ) : Example 1

- Following NFA
 - Σ = \{ a, b \}

- Move
 - move(p1, a) = \{ p2, p3 \}
 - move(p1, b) = ∅
 - move(p2, a) = ∅
 - move(p2, b) = \{ p3 \}
 - move(p3, a) = ∅
 - move(p3, b) = ∅

move(\{p1, p2\}, b) = \{ p3 \}
move(p, σ) : Example 2

- Following NFA
 - \(\Sigma = \{ a, b \} \)

- Move
 - \(\text{move}(p_1, a) = \{ p_2 \} \)
 - \(\text{move}(p_1, b) = \{ p_3 \} \)
 - \(\text{move}(p_2, a) = \{ p_3 \} \)
 - \(\text{move}(p_2, b) = \emptyset \)
 - \(\text{move}(p_3, a) = \emptyset \)
 - \(\text{move}(p_3, b) = \emptyset \)
 - \(\text{move}\{p_1, p_2\}, a\) = \{p_2, p_3\}
NFA → DFA Reduction Algorithm ("subset")

- **Input** NFA (Σ, Q, q_0, F_n, δ), **Output** DFA (Σ, R, r_0, F_d, δ')

- **Algorithm**

 Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R
 // DFA start state

 While \exists an unmarked state $r \in R$
 // process DFA state r

 Mark r
 // each state visited once

 For each $\sigma \in \Sigma$
 // for each symbol σ

 Let $E = \text{move}(\delta, r, \sigma)$
 // states reached via σ

 Let $e = \varepsilon$-closure(δ, E)
 // states reached via ε

 If $e \notin R$
 // if state e is new

 Let $R = R \cup \{e\}$
 // add e to R (unmarked)

 Let $\delta' = \delta' \cup \{r, \sigma, e\}$
 // add transition $r \rightarrow e$ on σ

 Let $F_d = \{r \mid \exists s \in r \text{ with } s \in F_n\}$
 // final if include state in F_n
NFA \rightarrow DFA Example 1

- Start = ε-closure(δ, p1) = { {p1, p3} }
- $R = \{ \{p1, p3\} \}$
- $r \in R = \{p1, p3\}$
- move(δ, {p1, p3}, a) = {p2}
 - $e = \varepsilon$-closure(δ, {p2}) = {p2}
 - $R = R \cup \{\{p2\}\} = \{\{p1, p3\}, \{p2\}\}$
 - $\delta' = \delta' \cup \{\{p1, p3\}, a, \{p2\}\}$
- move(δ, {p1, p3}, b) = \emptyset
NFA → DFA Example 1 (cont.)

• \(R = \{ \{p1,p3\}, \{p2\} \} \)
• \(r \in R = \{p2\} \)
• \(\text{move}(\delta,\{p2\},a) = \emptyset \)
• \(\text{move}(\delta,\{p2\},b) = \{p3\} \)
 - \(e = \varepsilon\text{-closure}(\delta,\{p3\}) = \{p3\} \)
 - \(R = R \cup \{\{p3\}\} = \{ \{p1,p3\}, \{p2\}, \{p3\} \} \)
 - \(\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\} \)
• $R = \{ \{p_1,p_3\}, \{p_2\}, \{p_3\} \}$
• $r \in R = \{p_3\}$
• $\text{Move}(\{p_3\},a) = \emptyset$
• $\text{Move}(\{p_3\},b) = \emptyset$
• Mark $\{p_3\}$, exit loop
• $F_d = \{\{p_1,p_3\}, \{p_3\}\}$
 > Since $p_3 \in F_n$
• Done!

DFA

NFA
NFA → DFA Example 2

NFA

DFA

R = \{ \{A\}, \{B,D\}, \{C,D\} \}
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

DFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:
NFA → DFA Example 3

R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \}
NFA → DFA Practice

Diagram: A non-deterministic finite automaton (NFA) with transitions labeled as follows:
- From state 0:
 - Transition on 'a' to state 1
 - Transition on 'b' to state 3
- From state 1:
 - Transition on 'a' to state 2
- From state 2:
 - Transition on 'a' to state 0
 - Transition on ε to state 2
- From state 3:
 - Transition on 'a' to state 1
- From state 0 to state 3:
 - Transition labeled 'b'

The DFA should be constructed to accept the same language as the NFA.
NFA \rightarrow DFA Practice
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states.
 - Given NFA with n states, DFA may have 2^n states:
 - Since a set with n items may have 2^n subsets.
 - Corollary:
 - Reducing a NFA with n states may be $O(2^n)$.

![NFA and DFA diagrams](image-url)
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(R)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q, \sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!

- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Closing the Loop: Reducing DFA to RE
Reducing DFAs to REs

- General idea
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states

- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

Intuition
- Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

Algorithm
- **Construct initial partition**
 - Accepting & non-accepting states
- **Iteratively split partitions** (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- **Update transitions & remove dead states**
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \textit{a} lead to identical partition P2
 - Even though transitions on \textit{a} lead to different states

\begin{tikzpicture}
 \node[state, fill=cyan!50] (s) at (0,0) {S};
 \node[state, fill=cyan!50] (t) at (1,0) {T};
 \node[state, fill=cyan!50] (u) at (0,-1) {U};
 \node[state, fill=cyan!50] (v) at (1,-1) {V};
 \node[state, fill=black] (x) at (2,0) {X};
 \node[state, fill=black] (y) at (2,-1) {Y};
 \node[state, fill=black] (z) at (3,-1) {Z};

 \draw[->, thick] (s) -- (x) node [midway, above] {a};
 \draw[->, thick] (s) -- (y) node [midway, above] {a};
 \draw[->, thick] (s) -- (z) node [midway, above] {a};
 \draw[->, thick] (t) -- (x) node [midway, above] {a};
 \draw[->, thick] (t) -- (y) node [midway, above] {a};
 \draw[->, thick] (t) -- (z) node [midway, above] {a};
 \draw[->, thick] (u) -- (x) node [midway, above] {a};
 \draw[->, thick] (u) -- (y) node [midway, above] {a};
 \draw[->, thick] (u) -- (z) node [midway, above] {a};
 \draw[->, thick] (v) -- (x) node [midway, above] {a};
 \draw[->, thick] (v) -- (y) node [midway, above] {a};
 \draw[->, thick] (v) -- (z) node [midway, above] {a};

 \node[draw=red, thick, rounded corners=5, fill=red!50, fit=(s) (t) (u) (v)] (P1) {};\node[anchor=north west] at (P1.north west) {P1};;
 \node[draw=red, thick, rounded corners=5, fill=red!50, fit=(x) (y) (z)] (P2) {};\node[anchor=north west] at (P2.north west) {P2};
\end{tikzpicture}
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \textit{a} from S,T lead to partition \textit{P2}
 - Transition on \textit{a} from U lead to partition \textit{P3}
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

 ![DFA Diagram]

 - **Initial partitions**
 - Accept: \(\{ R \} = P_1 \)
 - Reject: \(\{ S, T \} = P_2 \)

 - **Split partition?** → Not required, minimization done
 - \(\text{move}(S,a) = T \in P_2 \) → \(\text{move}(S,b) = R \in P_1 \)
 - \(\text{move}(T,a) = T \in P_2 \) → \(\text{move}(T,b) = R \in P_1 \)
Minimizing DFA: Example 2
Minimizing DFA: Example 2

- **DFA**

 ![Diagram of DFA](image)

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition? → Yes, different partitions for B**
 - move(S,a) = T ∈ P2 – move(S,b) = T ∈ P2
 - move(T,a) = T ∈ P2 – move (T,b) = R ∈ P1

DFA already minimal
Complement of DFA

- Given a DFA accepting language L
 - How can we create a DFA accepting its complement?
 - Example DFA
 - $\Sigma = \{a, b\}$
Complement of DFA

Algorithm
- Add explicit transitions to a dead state
- Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

Note this only works with DFAs
- Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA

- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm

- DFA
 - Minimization, complementation