CMSC 330: Organization of Programming Languages

DFAs, and NFAs, and Regexps
The story so far, and what’s next

- **Goal:** Develop an algorithm that determines whether a string \(s \) is matched by regex \(R \)
 - I.e., whether \(s \) is a member of \(R \)’s *language*

- **Approach:** Convert \(R \) to a *finite automaton* \(FA \) and see whether \(s \) is *accepted* by \(FA \)
 - Details: Convert \(R \) to a *nondeterministic FA* (NFA), which we then convert to a *deterministic FA* (DFA),
 - which enjoys a fast acceptance algorithm
Two Types of Finite Automata

- **Deterministic** Finite Automata (DFA)
 - Exactly one sequence of steps for each string
 - Easy to implement acceptance check
 - All examples so far

- **Nondeterministic** Finite Automata (NFA)
 - May have many sequences of steps for each string
 - Accepts if any path ends in final state at end of string
 - More compact than DFA
 - But more expensive to test whether a string matches
Comparing DFAs and NFAs

- NFAs can have more than one transition leaving a state on the same symbol

- DFAs allow only one transition per symbol
 - i.e., transition function must be a valid function
 - DFA is a special case of NFA
Comparing DFAs and NFAs (cont.)

- NFAs may have transitions with empty string label
 - May move to new state without consuming character

```
ε-transition
```

- DFA transition must be labeled with symbol
 - DFA is a special case of NFA
DFA for \((a|b)^*abb\)
NFA for \((a|b)^*abb\)

- **ba**
 - Has paths to either \(S0\) or \(S1\)
 - Neither is final, so rejected

- **babaabb**
 - Has paths to different states
 - One path leads to \(S3\), so accepts string
NFA for \((ab|aba)^* \)

- **aba**
 - Has paths to states \(S0, S1 \)

- **ababa**
 - Has paths to \(S0, S1 \)
 - Need to use \(\varepsilon \)-transition
Comparing NFA and DFA for \((ab|aba)^*\)
Quiz 1: Which DFA matches this regexp?

\(b(b|a+b?) \)

A.

\[\begin{array}{c}
0 \xrightarrow{b} 1 \\
1 \xrightarrow{b} 2 \\
2 \xrightarrow{b} 3 \\
3 \xrightarrow{b} 4 \\
4 \xrightarrow{a} 3
\end{array} \]

B.

\[\begin{array}{c}
0 \xrightarrow{b} 1 \\
1 \xrightarrow{b} 2 \\
2 \xrightarrow{a} 3 \\
3 \xrightarrow{a} 2
\end{array} \]

C.

\[\begin{array}{c}
0 \xrightarrow{b} 1 \\
1 \xrightarrow{a} 2
\end{array} \]

D. None of the above
Quiz 1: Which DFA matches this regexp?

\[b (b | a+b?) \]

A.

B.

C.

D. None of the above
Formal Definition

- A deterministic finite automaton (DFA) is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is an alphabet
 - Q is a nonempty set of states
 - $q_0 \in Q$ is the start state
 - $F \subseteq Q$ is the set of final states
 - $\delta : Q \times \Sigma \rightarrow Q$ specifies the DFA's transitions
 - What's this definition saying that δ is?

- A DFA accepts s if it stops at a final state on s
Formal Definition: Example

- $\Sigma = \{0, 1\}$
- $Q = \{S0, S1\}$
- $q_0 = S0$
- $F = \{S1\}$

<table>
<thead>
<tr>
<th>input state</th>
<th>symbol</th>
<th>δ</th>
</tr>
</thead>
<tbody>
<tr>
<td>S0</td>
<td>0</td>
<td>S0</td>
</tr>
<tr>
<td>S0</td>
<td>1</td>
<td>S1</td>
</tr>
<tr>
<td>S1</td>
<td>0</td>
<td>S0</td>
</tr>
<tr>
<td>S1</td>
<td>1</td>
<td>S1</td>
</tr>
</tbody>
</table>

or as $\{(S0,0,S0),(S0,1,S1),(S1,0,S0),(S1,1,S1)\}$
Implementing DFAs (one-off)

It's easy to build a program which mimics a DFA

```c
cur_state = 0;
while (1) {

    symbol = getchar();

    switch (cur_state) {
        case 0: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '\n': printf("rejected\n"); return 0;
                default:   printf("rejected\n"); return 0;
                        break;
        case 1: switch (symbol) {
            case '0':  cur_state = 0; break;
            case '1':  cur_state = 1; break;
            case '\n': printf("accepted\n"); return 1;
                default:   printf("rejected\n"); return 0;
                        break;
        default: printf("unknown state; I'm confused\n");
                        break;
    }
}
```

CMSC 330 Fall 2019
Implementing DFAs (generic)

More generally, use generic table-driven DFA

```plaintext
given components \((\Sigma, Q, q_0, F, \delta)\) of a DFA:

let \(q = q_0\)
while (there exists another symbol \(\sigma\) of the input string)
    \(q := \delta(q, \sigma)\);
if \(q \in F\) then
    accept
else reject
```

- \(q\) is just an integer
- Represent \(\delta\) using arrays or hash tables
- Represent \(F\) as a set
Nondeterministic Finite Automata (NFA)

An NFA is a 5-tuple $(\Sigma, Q, q_0, F, \delta)$ where

- Σ, Q, q_0, F as with DFAs
- $\delta \subseteq Q \times (\Sigma \cup \{\varepsilon\}) \times Q$ specifies the NFA's transitions

Example

- $\Sigma = \{a\}$
- $Q = \{S1, S2, S3\}$
- $q_0 = S1$
- $F = \{S3\}$
- $\delta = \{(S1,a,S1), (S1,a,S2), (S2,\varepsilon,S3)\}$

An NFA accepts s if there is at least one path via s from the NFA’s start state to a final state
NFA Acceptance Algorithm (Sketch)

- When NFA processes a string s
 - NFA must keep track of several “current states”
 - Due to multiple transitions with same label, and ε-transitions
 - If any current state is final when done then accept s

- Example
 - After processing “a”
 - NFA may be in states
 - $S1$
 - $S2$
 - $S3$
 - Since $S3$ is final, s is accepted

- Algorithm is slow, space-inefficient; prefer DFAs!
Relating REs to DFAs and NFAs

- Regular expressions, NFAs, and DFAs accept the same languages! *Can convert between them*

NB. Both *transform* and *reduce* are historical terms; they mean “convert”

CMSC 330 Fall 2019
Reducing Regular Expressions to NFAs

- Goal: Given regular expression A, construct NFA: $<A> = (\Sigma, Q, q_0, F, \delta)$
 - Remember regular expressions are defined recursively from primitive RE languages
 - Invariant: $|F| = 1$ in our NFAs
 - Recall $F = \text{set of final states}$

- Will define $<A>$ for base cases: $\sigma, \varepsilon, \emptyset$
 - Where σ is a symbol in Σ
- And for inductive cases: $AB, A|B, A^*$
Reducing Regular Expressions to NFAs

- **Base case:** σ

 $<\sigma> = (\{\sigma\}, \{S0, S1\}, S0, \{S1\}, \{(S0, \sigma, S1)\})$

 Recall: NFA is $(\Sigma, Q, q_0, F, \delta)$ where
 - Σ is the alphabet
 - Q is set of states
 - q_0 is starting state
 - F is set of final states
 - δ is transition relation
Reduction

- **Base case: \(\varepsilon \)**

\(<\varepsilon> = (\emptyset, \{S0\}, S0, \{S0\}, \emptyset)\)

- **Base case: \(\emptyset \)**

\(<\emptyset> = (\emptyset, \{S0, S1\}, S0, \{S1\}, \emptyset)\)
Reduction: Concatenation

Induction: \(AB \)

\[
\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)
\]

\[
\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)
\]
Reduction: Concatenation

- **Induction:** AB

- $\langle A \rangle = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $\langle B \rangle = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
- $\langle AB \rangle = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B, q_A, \{f_B\}, \delta_A \cup \delta_B \cup \{(f_A, \epsilon, q_B)\})$
Reduction: Union

Induction: $A | B$

- $<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A)$
- $ = (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B)$
Reduction: Union

Induction: \(A \mid B \)

- \(<A> = (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \)
- \(= (\Sigma_B, Q_B, q_B, \{f_B\}, \delta_B) \)
- \(<A \mid B> = (\Sigma_A \cup \Sigma_B, Q_A \cup Q_B \cup \{S0,S1\}, S0, \{S1\}, \delta_A \cup \delta_B \cup \{(S0,\varepsilon,q_A), (S0,\varepsilon,q_B), (f_A,\varepsilon,S1), (f_B,\varepsilon,S1)\}) \)
Reduction: Closure

- Induction: A^*

- $\langle A \rangle = (\Sigma, Q_A, q_A, \{f_A\}, \delta_A)$
Reduction: Closure

- **Induction: \(A^* \)**

\[
\begin{align*}
< A > &= (\Sigma_A, Q_A, q_A, \{f_A\}, \delta_A) \\
< A^* > &= (\Sigma_A, Q_A \cup \{S0, S1\}, S0, \{S1\}, \\
& \quad \delta_A \cup \{(f_A, \varepsilon, S1), (S0, \varepsilon, q_A), (S0, \varepsilon, S1), (S1, \varepsilon, S0)\})
\end{align*}
\]
Quiz 2: Which NFA matches a^*?

A.

B.

C.

D.
Quiz 2: Which NFA matches a^*?
Quiz 3: Which NFA matches $a|b^*$?
Quiz 3: Which NFA matches $a|b^*$?
Draw NFAs for the regular expression \((0|1)^*110^*\)
Draw NFAs for the regular expression \((ab^*c|d^*a|ab)d\)
Reduction Complexity

- Given a regular expression A of size n...

 Size = # of symbols + # of operations

- How many states does $<A>$ have?
 - Two added for each $|$, two added for each $*$
 - $O(n)$
 - That’s pretty good!
Recap

Finite automata
- Alphabet, states…
- \((\Sigma, Q, q_0, F, \delta)\)

Types
- Deterministic (DFA)
 - Non-deterministic (NFA)

Reducing RE to NFA
- Concatenation
- Union
- Closure
Reducing NFA to DFA
Reducing NFA to DFA

- NFA may be reduced to DFA
 - By explicitly tracking the set of NFA states

- Intuition
 - Build DFA where
 - Each DFA state represents a set of NFA “current states”

- Example

![Diagram showing NFA and DFA transitions]

NFA: S1 → S2 (a), S2 → S3 (ε)
DFA: S1 → S1, S2, S3 (a)
Algorithm for Reducing NFA to DFA

- Reduction applied using the subset algorithm
 - DFA state is a subset of set of all NFA states

- Algorithm
 - Input
 - NFA (Σ, Q, q_0, F_n, δ)
 - Output
 - DFA (Σ, R, r_0, F_d, δ)
 - Using two subroutines
 - ϵ-closure(δ, p) (and ϵ-closure(δ, Q))
 - move(δ, p, σ) (and move(δ, Q, σ))
 - (where p is an NFA state)
ε-transitions and ε-closure

We say \(p \xrightarrow{\varepsilon} q \)

• If it is possible to go from state \(p \) to state \(q \) by taking only ε-transitions in \(\delta \)
• If \(\exists \ p, p_1, p_2, \ldots, p_n, q \in Q \) such that
 - \(\{p,\varepsilon,p_1\} \in \delta \)
 - \(\{p_1,\varepsilon,p_2\} \in \delta \)
 - \(\ldots \)
 - \(\{p_n,\varepsilon,q\} \in \delta \)

ε-closure(\(\delta, p \))

• Set of states reachable from \(p \) using ε-transitions alone
 - Set of states \(q \) such that \(p \xrightarrow{\varepsilon} q \) according to \(\delta \)
 - \(\varepsilon\text{-closure}(\delta, p) = \{ q \mid p \xrightarrow{\varepsilon} q \text{ in } \delta \} \)
 - \(\varepsilon\text{-closure}(\delta, Q) = \{ q \mid p \in Q, p \xrightarrow{\varepsilon} q \text{ in } \delta \} \)

Notes

- \(\varepsilon\text{-closure}(\delta, p) \) always includes \(p \)
- We write \(\varepsilon\text{-closure}(p) \) or \(\varepsilon\text{-closure}(Q) \) when \(\delta \) is clear from context
ε-closure: Example 1

Following NFA contains

- p1 $\xrightarrow{\varepsilon}$ p2
- p2 $\xrightarrow{\varepsilon}$ p3
- p1 $\xrightarrow{\varepsilon}$ p3

- Since p1 $\xrightarrow{\varepsilon}$ p2 and p2 $\xrightarrow{\varepsilon}$ p3

ε-closures

- ε-closure(p1) = \{ p1, p2, p3 \}
- ε-closure(p2) = \{ p2, p3 \}
- ε-closure(p3) = \{ p3 \}
- ε-closure(\{ p1, p2 \}) = \{ p1, p2, p3 \} \cup \{ p2, p3 \}
ε-closure: Example 2

- Following NFA contains
 - $p_1 \xrightarrow{\varepsilon} p_3$
 - $p_3 \xrightarrow{\varepsilon} p_2$
 - $p_1 \xrightarrow{\varepsilon} p_2$
 - Since $p_1 \xrightarrow{\varepsilon} p_3$ and $p_3 \xrightarrow{\varepsilon} p_2$

- **ε-closures**
 - $\text{ε-closure}(p_1) = \{ p_1, p_2, p_3 \}$
 - $\text{ε-closure}(p_2) = \{ p_2 \}$
 - $\text{ε-closure}(p_3) = \{ p_2, p_3 \}$
 - $\text{ε-closure}(\{ p_2, p_3 \}) = \{ p_2 \} \cup \{ p_2, p_3 \}$
ε-closure Algorithm: Approach

Input: NFA \((\Sigma, Q, q_0, F_n, \delta)\), State Set \(R\)

Output: State Set \(R'\)

Algorithm

Let \(R' = R\) // start states

Repeat

Let \(R = R'\) // continue from previous

Let \(R' = R \cup \{q \mid p \in R, (p, \varepsilon, q) \in \delta\}\) // new \(\varepsilon\)-reachable states

Until \(R = R'\) // stop when no new states

This algorithm computes a fixed point
ε-closure Algorithm Example

Calculate ϵ-closure($\delta, \{p1\}$)

- R
 - $\{p1\}$
 - $\{p1\}$
 - $\{p1, p2\}$
 - $\{p1, p2, p3\}$
 - $\{p1, p2, p3\}$

- R'
 - $\{p1\}$
 - $\{p1\}$
 - $\{p1, p2\}$
 - $\{p1, p2, p3\}$
 - $\{p1, p2, p3\}$

Let $R' = R$
Repeat
 - Let $R = R'$
 - Let $R' = R \cup \{q | p \in R, (p, \epsilon, q) \in \delta\}$
Until $R = R'$
Calculating move(p,σ)

- move(δ,p,σ)
 - Set of states reachable from p using exactly one transition on symbol σ
 - Set of states q such that \{p, σ, q\} ∈ δ
 - move(δ,p,σ) = \{ q | \{p, σ, q\} ∈ δ \}
 - move(δ,Q,σ) = \{ q | p ∈ Q, \{p, σ, q\} ∈ δ \}
 - i.e., can “lift” move() to a set of states Q

- Notes:
 - move(δ,p,σ) is Ø if no transition (p,σ,q) ∈ δ, for any q
 - We write move(p,σ) or move(R,σ) when δ clear from context
move(p, σ) : Example 1

- **Following NFA**
 - Σ = \{ a, b \}

- **Move**
 - move(p1, a) = \{ p2, p3 \}
 - move(p1, b) = Ø
 - move(p2, a) = Ø
 - move(p2, b) = \{ p3 \}
 - move(p3, a) = Ø
 - move(p3, b) = Ø

move({p1,p2}, b) = \{ p3 \}
move(p, σ) : Example 2

- Following NFA
 - $\Sigma = \{ a, b \}$

- Move
 - $\text{move}(p_1, a) = \{ p_2 \}$
 - $\text{move}(p_1, b) = \{ p_3 \}$
 - $\text{move}(p_2, a) = \{ p_3 \}$
 - $\text{move}(p_2, b) = \emptyset$
 - $\text{move}(p_3, a) = \emptyset$
 - $\text{move}(p_3, b) = \emptyset$

move({p_1, p_2}, a) = \{p_2, p_3\}
NFA → DFA Reduction Algorithm ("subset")

- Input NFA (Σ, Q, q_0, F_n, δ), Output DFA (Σ, R, r_0, F_d, δ')
- Algorithm

 Let $r_0 = \varepsilon$-closure(δ, q_0), add it to R // DFA start state

 While \exists an unmarked state $r \in R$ // process DFA state r

 Mark r // each state visited once

 For each $\sigma \in \Sigma$ // for each symbol σ

 Let $E = \text{move}(\delta, r, \sigma)$ // states reached via σ

 Let $e = \varepsilon$-closure(δ, E) // states reached via ε

 If $e \not\in R$ // if state e is new

 Let $R = R \cup \{e\}$ // add e to R (unmarked)

 Let $\delta' = \delta' \cup \{r, \sigma, e\}$ // add transition $r \rightarrow e$ on σ

 Let $F_d = \{r | \exists s \in r \text{ with } s \in F_n\}$ // final if include state in F_n
NFA → DFA Example 1

- Start = ε-closure(δ,p1) = \{ p1,p3 \}
- $R = \{ p1,p3 \}$
- $r \in R = \{ p1,p3 \}$
- move(δ,\{p1,p3\},a) = \{p2\}
 - $e = \varepsilon$-closure(δ,\{p2\}) = \{p2\}
 - $R = R \cup \{p2\} = \{ p1,p3, p2 \}$
 - $\delta' = \delta' \cup \{p1,p3, a, p2\}$
- move(δ,\{p1,p3\},b) = \emptyset
NFA \rightarrow DFA Example 1 (cont.)

- $R = \{ \{p1,p3\}, \{p2\} \}$
- $r \in R = \{p2\}$
- $\text{move}(\delta,\{p2\},a) = \emptyset$
- $\text{move}(\delta,\{p2\},b) = \{p3\}$
 - $e = \varepsilon$-$\text{closure}(\delta,\{p3\}) = \{p3\}$
 - $R = R \cup \{\{p3\}\} = \{\{p1,p3\}, \{p2\}, \{p3\}\}$
 - $\delta' = \delta' \cup \{\{p2\}, b, \{p3\}\}$

NFA

DFA
NFA \rightarrow DFA Example 1 (cont.)

• $R = \{ \{p1,p3\}, \{p2\}, \{p3\} \}$
• $r \in R = \{p3\}$
• $\text{Move}(\{p3\},a) = \emptyset$
• $\text{Move}(\{p3\},b) = \emptyset$
• $\text{Mark} \{p3\}, \text{exit loop}$
• $F_d = \{\{p1,p3\}, \{p3\}\}$
 ➤ Since $p3 \in F_n$
• Done!
NFA → DFA Example 2

NFA

\[R = \{ \{A\}, \{B,D\}, \{C,D\} \} \]
Quiz 4: Which DFA is equivalent to this NFA?

NFA:

A.

B.

C.

D. None of the above
Quiz 4: Which DFA is equiv to this NFA?

NFA:

A.

B.

C.

D. None of the above
Actual Answer

NFA:
NFA → DFA Example 3

NFA

DFA

\[R = \{ \{A, E\}, \{B, D, E\}, \{C, D\}, \{E\} \} \]
NFA → DFA Example
NFA → DFA Practice
NFA → DFA Practice
Subset Algorithm as a Fixed Point

Input: NFA \((\Sigma, Q, q_0, F, \delta)\)

Output: DFA \(M'\)

Algorithm

Let \(q_0' = \epsilon\)-closure\((\delta, q_0)\)

Let \(F' = \{q_0'\}\) if \(q_0' \cap F \neq \emptyset\), or \(\emptyset\) otherwise

Let \(M' = (\Sigma, \{q_0'\}, q_0', F', \emptyset)\) // starting approximation of DFA

Repeat

Let \(M = M'\) // current DFA approx

For each \(q \in \text{states}(M), \sigma \in \Sigma\) // for each DFA state \(q\) and symb \(\sigma\)

Let \(s = \epsilon\)-closure\((\delta, \text{move}(\delta, q, \sigma))\) // new subset from \(q\)

Let \(F' = \{s\}\) if \(s \cap F \neq \emptyset\), or \(\emptyset\) otherwise, // subset contains final?

\(M' = M' \cup (\emptyset, \{s\}, \emptyset, F', \{(q, \sigma, s)\})\) // update DFA

Until \(M' = M\) // reached fixed point
Redux: NFA to DFA Example 1

- $q'_0 = \varepsilon\text{-closure}(\delta, p1) = \{p1, p3\}$
- $F' = \{\{p1, p3\}\}$ since $\{p1, p3\} \cap \{p3\} \neq \emptyset$

- $M' = \{\Sigma, \{\{p1, p3\}\}, \{p1, p3\}, \{\{p1, p3\}\}, \emptyset\}$

NFA

DFA

Q' q'_0 F' δ'

$\{1,3\}$
Redux: NFA to DFA Example 1 (cont)

- \(M' = \{ \Sigma, \{\{p1,p3\}\}, \{p1,p3\}, \{\{p1,p3\}\}, \emptyset \} \)
- \(q = \{p1, p3\} \)
- \(a = a \)
- \(s = \{p2\} \)
 - since \(\text{move}(\delta,\{p1, p3\},a) = \{p2\} \)
 - and \(\varepsilon\)-closure\((\delta,\{p2\}) = \{p2\} \)
- \(F' = \emptyset \)
 - Since \(\{p2\} \cap \{p3\} = \emptyset \)
 - where \(s = \{p2\} \) and \(F = \{p3\} \)

\[M' = M' \cup (\emptyset, \{[p2]\}, \emptyset, \emptyset, \{([p1,p3],a,[p2])\}) \]

\[= \{ \Sigma, \{\{p1,p3\},[p2]\}, \{p1,p3\}, \{\{p1,p3\}\}, \{([p1,p3],a,[p2])\} \} \]
Redux: NFA to DFA Example 1 (cont)

- $M' = \{ \Sigma, \{\{S1,S3\},\{S2\}\}, \{S1,S3\}, \{\{S1,S3\}\}, \{((S1,S3), a, \{S2\})\} \} $
 - $q = \{S2\}$
 - $a = b$
 - $s = \{S3\}$
 - since $\text{move}(\delta, \{S2\}, b) = \{S3\}$
 - and ε-closure$(\delta, \{S3\}) = \{S3\}$
 - $F' = \{\{S3\}\}$
 - Since $\{S3\} \cap \{S3\} = \{S3\}$
 - where $s = \{S3\}$ and $F = \{S3\}$

- $M' = M' \cup \left(\emptyset, \{S3\}, \emptyset, \{\{S3\}\}, \{((S2), b, \{S3\})\} \right)
 = \{ \Sigma, \{\{S1,S3\}, \{S2\}, \{S3\}\}, \{S1,S3\}, \{\{S1,S3\}, \{S3\}\}, \{((S1,S3), a, \{S2\}), ((S2), b, \{S3\})\} \}$

NFA

DFA
Analyzing the Reduction

- Can reduce any NFA to a DFA using subset alg.
- How many states in the DFA?
 - Each DFA state is a subset of the set of NFA states
 - Given NFA with n states, DFA may have 2^n states
 - Since a set with n items may have 2^n subsets
 - Corollary
 - Reducing a NFA with n states may be $O(2^n)$
Recap: Matching a Regexp R

- Given R, construct NFA. Takes time $O(|R|)$
- Convert NFA to DFA. Takes time $O(2^{|R|})$
 - But usually not the worst case in practice
- Use DFA to accept/reject string s
 - Assume we can compute $\delta(q,\sigma)$ in constant time
 - Then time to process s is $O(|s|)$
 - Can’t get much faster!
- Constructing the DFA is a one-time cost
 - But then processing strings is fast
Regular Expressions in Practice

- Regular expressions are typically “compiled” into tables for the generic algorithm
 - Can think of this as a simple bytecode interpreter
 - But really just a representation of \((\Sigma, Q_A, q_A, \{f_A\}, \delta_A)\), the components of the DFA produced from the RE

- Regular expression implementations often have extra constructs that are non-regular
 - I.e., can accept more than the regular languages
 - Can be useful in certain cases
 - Disadvantages
 - Nonstandard, plus can have higher complexity
Closing the Loop: Reducing DFA to RE

DFA \rightarrow NFA

DFA \leftarrow \text{reduce} \rightarrow \text{NFA}

DFA \leftarrow \text{transform} \rightarrow \text{NFA}

DFA \leftarrow \text{transform} \rightarrow \text{RE}

DFA \leftarrow \text{reduce} \rightarrow \text{NFA}

DFA \leftarrow \text{transform} \rightarrow \text{RE}

CMSC 330 Fall 2019
Reducing DFAs to REs

- **General idea**
 - Remove states one by one, labeling transitions with regular expressions
 - When two states are left (start and final), the transition label is the regular expression for the DFA
DFA to RE example

Language over $\Sigma = \{0,1\}$ such that every string is a multiple of 3 in binary

\[
(0 + 1(0 \ 1^* \ 0)1)^*
\]
Other Topics

- Minimizing DFA
 - Hopcroft reduction
- Complementing DFA
Minimizing DFAs

- Every regular language is recognizable by a unique minimum-state DFA
 - Ignoring the particular names of states
- In other words
 - For every DFA, there is a unique DFA with minimum number of states that accepts the same language
Minimizing DFA: Hopcroft Reduction

Intuition
- Look to distinguish states from each other
 - End up in different accept / non-accept state with identical input

Algorithm
- Construct initial partition
 - Accepting & non-accepting states
- Iteratively split partitions (until partitions remain fixed)
 - Split a partition if members in partition have transitions to different partitions for same input
 - Two states x, y belong in same partition if and only if for all symbols in Σ they transition to the same partition
- Update transitions & remove dead states

J. Hopcroft, “An n log n algorithm for minimizing states in a finite automaton,” 1971
Splitting Partitions

- No need to split partition \{S,T,U,V\}
 - All transitions on \(a\) lead to identical partition \(P2\)
 - Even though transitions on \(a\) lead to different states
Splitting Partitions (cont.)

- Need to split partition \{S,T,U\} into \{S,T\}, \{U\}
 - Transitions on \(a\) from \(S,T\) lead to partition \(P_2\)
 - Transition on \(a\) from \(U\) lead to partition \(P_3\)
Resplitting Partitions

- Need to reexamine partitions after splits
 - Initially no need to split partition \{S,T,U\}
 - After splitting partition \{X,Y\} into \{X\}, \{Y\} we need to split partition \{S,T,U\} into \{S,T\}, \{U\}

![Diagram showing partitions and resplitting]
Minimizing DFA: Example 1

- DFA

- Initial partitions

- Split partition
Minimizing DFA: Example 1

- **DFA**

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition? → Not required, minimization done**
 - move(S,a) = T ∈ P2 \quad – \quad move(S,b) = R ∈ P1
 - move(T,a) = T ∈ P2 \quad – \quad move(T,b) = R ∈ P1
Minimizing DFA: Example 2

S
 ^ v
 | |
 a b
T
 v v
 | |
 b a
R
Minimizing DFA: Example 2

- **DFA**

- **Initial partitions**
 - Accept \{ R \} = P1
 - Reject \{ S, T \} = P2

- **Split partition? → Yes, different partitions for B**
 - move(S,a) = T ∈ P2 -- move(S,b) = T ∈ P2
 - move(T,a) = T ∈ P2 -- move (T,b) = R ∈ P1

DFA already minimal
Minimizing DFA: Example 3
Minimizing DFA: Example 3
Given a DFA accepting language \(L \)
- How can we create a DFA accepting its complement?
- Example DFA
 - \(\Sigma = \{a, b\} \)
Complement of DFA

- Algorithm
 - Add explicit transitions to a dead state
 - Change every accepting state to a non-accepting state & every non-accepting state to an accepting state

- Note this only works with DFAs
 - Why not with NFAs?
Summary of Regular Expression Theory

- Finite automata
 - DFA, NFA
- Equivalence of RE, NFA, DFA
 - RE → NFA
 - Concatenation, union, closure
 - NFA → DFA
 - ε-closure & subset algorithm
- DFA
 - Minimization, complementation