
CMSC 330:  Organization of 
Programming Languages

Lambda Calculus Encodings
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The Power of Lambdas

Despite its simplicity, the lambda calculus is quite 
expressive: it is Turing complete!

Means we can encode any computation we want*
• If we’re sufficiently clever...

Examples
• Let bindings
• Booleans
• Pairs
• Natural numbers & arithmetic
• Looping

*To show Turing completeness 
we have to map every Turing 
machine to lambda calculus 
term. We are not doing that here. 
Rather, we are showing how 
typical PL constructs can be 
represented in lambda calculus, 
to show what it can doCMSC 330 Fall 2019



Let bindings

Local variable declarations are like defining a 
function and applying it immediately (once):
• let x = e1 in e2 = (λx.e2) e1

Example
• let x = (λy.y) in x x = (λx.x x) (λy.y) 

where 
(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y) 
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Booleans

Church’s encoding of mathematical logic
• true = λx.λy.x
• false = λx.λy.y
• if a then b else c

Ø Defined to be the expression: a b c

Examples
• if true then b else c = (λx.λy.x) b c → (λy.b) c → b
• if false then b else c = (λx.λy.y) b c → (λy.y) c → c
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Booleans (cont.)

Other Boolean operations
• not = λx.x false true

Ø not x = x false true = if x then false else true
Ø not true → (λx.x false true) true → (true false true) → false

• and = λx.λy.x y false
Ø and x y = if x then y else false

• or = λx.λy.x true y
Ø or x y = if x then true else y

Given these operations
• Can build up a logical inference system
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Quiz #1

What is the lambda calculus encoding of xor x y?
- xor true true = xor false false = false
- xor true false = xor false true = true

A. x x y
B. x (y true false) y
C. x (y false true) y
D. y x y

6

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true
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Pairs
Encoding of a pair a, b
• (a,b) = λx.if x then a else b
• fst = λf.f true
• snd = λf.f false

Examples
• fst (a,b) = (λf.f true) (λx.if x then a else b) →

(λx.if x then a else b) true →
if true then a else b → a

• snd (a,b) = (λf.f false) (λx.if x then a else b) →
(λx.if x then a else b) false →
if false then a else b → b
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Natural Numbers (Church* Numerals) 

Encoding of non-negative integers
• 0 = λf.λy.y
• 1 = λf.λy.f y
• 2 = λf.λy.f (f y)
• 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>
• Formally:  n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)
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Quiz #2

What OCaml type could you give to a Church-
encoded numeral?

A. (’a -> ‘b) -> ‘a -> ‘b
B. (‘a -> ‘a) -> ‘a -> ‘a
C. (‘a -> ‘a) -> ‘b -> int
D. (int -> int) -> int -> int

10

n = λf.λy.<apply f n times to y>
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Operations On Church Numerals 

Successor
• succ = λz.λf.λy.f (z f y)

Example
• succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →
λf.λy.f ((λf.λy.y) f y) →
λf.λy.f ((λy.y) y) →
λf.λy.f y
= 1

Since (λx.y) z → y

• 0 = λf.λy.y
• 1 = λf.λy.f y
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Operations On Church Numerals (cont.)

IsZero?
• iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

Example
• iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →
(λf.λy.y) (λy.false) true →
(λy.y) true →
true

• 0 = λf.λy.y

Since (λx.y) z → y

CMSC 330 Fall 2019



14

Arithmetic Using Church Numerals

If M and N are numbers (as λ expressions)
• Can also encode various arithmetic operations

Addition
• M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)
Ø In prefix notation (+ M N)

Multiplication
• M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y
Ø In prefix notation (* M N)
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Arithmetic (cont.)

Prove 1+1 = 2
• 1+1 = λx.λy.(1 x) (1 x y) = 
• λx.λy.((λf.λy.f y) x) (1 x y) → 
• λx.λy.(λy.x y) (1 x y) →
• λx.λy.x (1 x y) →
• λx.λy.x ((λf.λy.f y) x y) →
• λx.λy.x ((λy.x y) y) →
• λx.λy.x (x y) = 2

With these definitions
• Can build a theory of arithmetic

• 1 = λf.λy.f y
• 2 = λf.λy.f (f y)
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Looping & Recursion

Define D = λx.x x, then
• D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

So D D is an infinite loop
• In general, self application is how we get looping
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The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))
Then
Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)
Y F is a fixed point (aka fixpoint) of F
Thus Y F = F (Y F) = F (F (Y F)) = ...
• We can use Y to achieve recursion for F
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Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
• The second argument to fact is the integer
• The first argument is the function to call in the body

Ø We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1

→ if 1 = 0 then 1 else 1 * ((Y fact) 0)
→ 1 * ((Y fact) 0)
= 1 * (fact (Y fact) 0)

→ 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

→ 1 * 1 → 1
CMSC 330 Fall 2019



Call-by-name vs. Call-by-value

Sometimes we have a choice about where to 
apply beta reduction. Before call (i.e., argument):
• (λz.z) ((λy.y) x) → (λz.z) x → x

Or after the call:
• (λz.z) ((λy.y) x) → (λy.y) x → x

The former strategy is called call-by-value (CBV)
• Evaluate any arguments before calling the function

The latter is called call-by-name (CBN)
• Delay evaluating arguments as long as possible
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Partial Evaluation

It is also possible to evaluate within a function 
(without calling it):
• (λy.(λz.z) y x)

Called partial evaluation
• Can combine with CBN or CBV
• In practical languages, this evaluation strategy is 

employed in a limited way, as compiler optimization

20

→ (λy.y x)

int foo(int x) {
return 0+x;

}

int foo(int x) {
return x;

}
→

CMSC 330 Fall 2019



Confluence

No matter what evaluation order (or combination) 
you choose, you get the same answer
• Assuming the evaluation always terminates

However, termination behavior differs between 
call-by-value and call-by-name
• if true then true else (D D) → true under call-by-name

Ø true true (D D) = (λx.λy.x) true (D D) → (λy.true) (D D) → true

• if true then true else (D D) → … under call-by-value
Ø (λx.λy.x) true (D D) → (λy.true) (D D) → (λy.true) (D D) → … 

never terminates
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Quiz #3

Y = λf.(λx.f (x x)) (λx.f (x x))

22

Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

Y is a fixed point combinator under which 
evaluation order?

A. Call-by-value
B. Call-by-name
C. Both
D. Neither
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Quiz #3

Y = λf.(λx.f (x x)) (λx.f (x x))
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Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

Y is a fixed point combinator under which 
evaluation order?

A. Call-by-value
B. Call-by-name
C. Both
D. Neither

In CBV, we expand
Y F = F (Y F) = F (F (Y F)) … indefinitely, for any F
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The Z Combinator: For CBV languages

Z = λf.(λx.f (λv.x x v)) (λx.f (λv.x x v))
Then
Z F x =
(λf.(λx.f (λv.x x v)) (λx.f (λv.x x v))) F →
(λx.F (λv.x x v)) (λx.F (λv.x x v)) →
F (λv. (λx.F (λv.x x v)) (λx.F (λv.x x v)) v)
F ((λx.F (λv.x x v)) (λx.F (λv.x x v)))
= F (Z F) 
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Discussion

Lambda calculus is Turing-complete 
• Most powerful language possible
• Can represent pretty much anything in “real” language

Ø Using clever encodings

But programs would be 
• Pretty slow (10000 + 1 → thousands of function calls)
• Pretty large (10000 + 1 → hundreds of lines of code)
• Pretty hard to understand (recognize 10000 vs. 9999)

In practice
• We use richer, more expressive languages
• That include built-in primitives
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The Need For Types
Consider the untyped lambda calculus
• false = λx.λy.y
• 0 = λx.λy.y

Since everything is encoded as a function...
• We can easily misuse terms…

Ø false 0 → λy.y
Ø if 0 then ...

…because everything evaluates to some function
The same thing happens in assembly language
• Everything is a machine word (a bunch of bits)
• All operations take machine words to machine words
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Simply-Typed Lambda Calculus (STLC)

e ::= n | x | λx:t.e | e e
• Added integers n as primitives

Ø Need at least two distinct types (integer & function)… 
Ø …to have type errors

• Functions now include the type t of their argument

t ::= int | t → t
• int is the type of integers
• t1 → t2 is the type of a function 

Ø That takes arguments of type t1 and returns result of type t2
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Types are limiting

STLC will reject some terms as ill-typed, even if 
they will not produce a run-time error
• Cannot type check Y in STLC

Ø Or in OCaml, for that matter, at least not as written earlier.

Surprising theorem: All (well typed) simply-typed 
lambda calculus terms are strongly normalizing
• A normal form is one that cannot be reduced further

Ø A value is a kind of normal form

• Strong normalization means STLC terms always
terminate 
Ø Proof is not by straightforward induction: Applications 

“increase” term size
28CMSC 330 Fall 2019
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Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using 

only functions
Ø These encodings are enlightening – make you a better 

(functional) programmer

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof 

systems, etc. can be developed in lambda calculus,
Ø then scaled to full languages
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Quiz 4

What is a normal form?    

a) The point at which an expression cannot 
reduce any further    
b) The point at which it is clear that an expression 
will reduce infinitely    
c) The original form of the lambda expression    
d) The form reached after one reduction
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Quiz 5
What feature does the (untyped) lambda calculus 
require to make it Turing complete?

a) Types
b) Natural numbers
c) Fixed point combinator
d) It already is Turing complete
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