
CMSC 330: Organization of
Programming Languages

Lambda Calculus Encodings

1CMSC 330 Fall 2019

2

The Power of Lambdas

Despite its simplicity, the lambda calculus is quite
expressive: it is Turing complete!

Means we can encode any computation we want*
• If we’re sufficiently clever...

Examples
• Let bindings
• Booleans
• Pairs
• Natural numbers & arithmetic
• Looping

*To show Turing completeness
we have to map every Turing
machine to lambda calculus
term. We are not doing that here.
Rather, we are showing how
typical PL constructs can be
represented in lambda calculus,
to show what it can doCMSC 330 Fall 2019

Let bindings

Local variable declarations are like defining a
function and applying it immediately (once):
• let x = e1 in e2 = (λx.e2) e1

Example
• let x = (λy.y) in x x = (λx.x x) (λy.y)

where
(λx.x x) (λy.y) → (λx.x x) (λy.y) → (λy.y) (λy.y) → (λy.y)

3CMSC 330 Fall 2019

4

Booleans

Church’s encoding of mathematical logic
• true = λx.λy.x
• false = λx.λy.y
• if a then b else c

Ø Defined to be the expression: a b c

Examples
• if true then b else c = (λx.λy.x) b c → (λy.b) c → b
• if false then b else c = (λx.λy.y) b c → (λy.y) c → c

CMSC 330 Fall 2019

5

Booleans (cont.)

Other Boolean operations
• not = λx.x false true

Ø not x = x false true = if x then false else true
Ø not true → (λx.x false true) true → (true false true) → false

• and = λx.λy.x y false
Ø and x y = if x then y else false

• or = λx.λy.x true y
Ø or x y = if x then true else y

Given these operations
• Can build up a logical inference system

CMSC 330 Fall 2019

Quiz #1

What is the lambda calculus encoding of xor x y?
- xor true true = xor false false = false
- xor true false = xor false true = true

A. x x y
B. x (y true false) y
C. x (y false true) y
D. y x y

6

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true

CMSC 330 Fall 2019

Quiz #1

What is the lambda calculus encoding of xor x y?
- xor true true = xor false false = false
- xor true false = xor false true = true

A. x x y
B. x (y true false) y
C. x (y false true) y
D. y x y

7

true = λx.λy.x
false = λx.λy.y
if a then b else c = a b c
not = λx.x false true

CMSC 330 Fall 2019

8

Pairs
Encoding of a pair a, b
• (a,b) = λx.if x then a else b
• fst = λf.f true
• snd = λf.f false

Examples
• fst (a,b) = (λf.f true) (λx.if x then a else b) →

(λx.if x then a else b) true →
if true then a else b → a

• snd (a,b) = (λf.f false) (λx.if x then a else b) →
(λx.if x then a else b) false →
if false then a else b → b

CMSC 330 Fall 2019

9

Natural Numbers (Church* Numerals)

Encoding of non-negative integers
• 0 = λf.λy.y
• 1 = λf.λy.f y
• 2 = λf.λy.f (f y)
• 3 = λf.λy.f (f (f y))

i.e., n = λf.λy.<apply f n times to y>
• Formally: n+1 = λf.λy.f (n f y)

*(Alonzo Church, of course)
CMSC 330 Fall 2019

Quiz #2

What OCaml type could you give to a Church-
encoded numeral?

A. (’a -> ‘b) -> ‘a -> ‘b
B. (‘a -> ‘a) -> ‘a -> ‘a
C. (‘a -> ‘a) -> ‘b -> int
D. (int -> int) -> int -> int

10

n = λf.λy.<apply f n times to y>

CMSC 330 Fall 2019

Quiz #2

What OCaml type could you give to a Church-
encoded numeral?

A. (’a -> ‘b) -> ‘a -> ‘b
B. (‘a -> ‘a) -> ‘a -> ‘a
C. (‘a -> ‘a) -> ‘b -> int
D. (int -> int) -> int -> int

11

n = λf.λy.<apply f n times to y>

CMSC 330 Fall 2019

12

Operations On Church Numerals

Successor
• succ = λz.λf.λy.f (z f y)

Example
• succ 0 =

(λz.λf.λy.f (z f y)) (λf.λy.y) →
λf.λy.f ((λf.λy.y) f y) →
λf.λy.f ((λy.y) y) →
λf.λy.f y
= 1

Since (λx.y) z → y

• 0 = λf.λy.y
• 1 = λf.λy.f y

CMSC 330 Fall 2019

13

Operations On Church Numerals (cont.)

IsZero?
• iszero = λz.z (λy.false) true

This is equivalent to λz.((z (λy.false)) true)

Example
• iszero 0 =

(λz.z (λy.false) true) (λf.λy.y) →
(λf.λy.y) (λy.false) true →
(λy.y) true →
true

• 0 = λf.λy.y

Since (λx.y) z → y

CMSC 330 Fall 2019

14

Arithmetic Using Church Numerals

If M and N are numbers (as λ expressions)
• Can also encode various arithmetic operations

Addition
• M + N = λf.λy.M f (N f y)

Equivalently: + = λM.λN.λf.λy.M f (N f y)
Ø In prefix notation (+ M N)

Multiplication
• M * N = λf.M (N f)

Equivalently: * = λM.λN.λf.λy.M (N f) y
Ø In prefix notation (* M N)

CMSC 330 Fall 2019

15

Arithmetic (cont.)

Prove 1+1 = 2
• 1+1 = λx.λy.(1 x) (1 x y) =
• λx.λy.((λf.λy.f y) x) (1 x y) →
• λx.λy.(λy.x y) (1 x y) →
• λx.λy.x (1 x y) →
• λx.λy.x ((λf.λy.f y) x y) →
• λx.λy.x ((λy.x y) y) →
• λx.λy.x (x y) = 2

With these definitions
• Can build a theory of arithmetic

• 1 = λf.λy.f y
• 2 = λf.λy.f (f y)

CMSC 330 Fall 2019

16

Looping & Recursion

Define D = λx.x x, then
• D D = (λx.x x) (λx.x x) → (λx.x x) (λx.x x) = D D

So D D is an infinite loop
• In general, self application is how we get looping

CMSC 330 Fall 2019

17

The Fixpoint Combinator

Y = λf.(λx.f (x x)) (λx.f (x x))
Then
Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)
Y F is a fixed point (aka fixpoint) of F
Thus Y F = F (Y F) = F (F (Y F)) = ...
• We can use Y to achieve recursion for F

CMSC 330 Fall 2019

18

Example

fact = λf.λn.if n = 0 then 1 else n * (f (n-1))
• The second argument to fact is the integer
• The first argument is the function to call in the body

Ø We’ll use Y to make this recursively call fact

(Y fact) 1 = (fact (Y fact)) 1

→ if 1 = 0 then 1 else 1 * ((Y fact) 0)
→ 1 * ((Y fact) 0)
= 1 * (fact (Y fact) 0)

→ 1 * (if 0 = 0 then 1 else 0 * ((Y fact) (-1))

→ 1 * 1 → 1
CMSC 330 Fall 2019

Call-by-name vs. Call-by-value

Sometimes we have a choice about where to
apply beta reduction. Before call (i.e., argument):
• (λz.z) ((λy.y) x) → (λz.z) x → x

Or after the call:
• (λz.z) ((λy.y) x) → (λy.y) x → x

The former strategy is called call-by-value (CBV)
• Evaluate any arguments before calling the function

The latter is called call-by-name (CBN)
• Delay evaluating arguments as long as possible

19CMSC 330 Fall 2019

Partial Evaluation

It is also possible to evaluate within a function
(without calling it):
• (λy.(λz.z) y x)

Called partial evaluation
• Can combine with CBN or CBV
• In practical languages, this evaluation strategy is

employed in a limited way, as compiler optimization

20

→ (λy.y x)

int foo(int x) {
return 0+x;

}

int foo(int x) {
return x;

}
→

CMSC 330 Fall 2019

Confluence

No matter what evaluation order (or combination)
you choose, you get the same answer
• Assuming the evaluation always terminates

However, termination behavior differs between
call-by-value and call-by-name
• if true then true else (D D) → true under call-by-name

Ø true true (D D) = (λx.λy.x) true (D D) → (λy.true) (D D) → true

• if true then true else (D D) → … under call-by-value
Ø (λx.λy.x) true (D D) → (λy.true) (D D) → (λy.true) (D D) → …

never terminates

21CMSC 330 Fall 2019

Quiz #3

Y = λf.(λx.f (x x)) (λx.f (x x))

22

Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

Y is a fixed point combinator under which
evaluation order?

A. Call-by-value
B. Call-by-name
C. Both
D. Neither

CMSC 330 Fall 2019

Quiz #3

Y = λf.(λx.f (x x)) (λx.f (x x))

23

Y F =
(λf.(λx.f (x x)) (λx.f (x x))) F →
(λx.F (x x)) (λx.F (x x)) →
F ((λx.F (x x)) (λx.F (x x)))
= F (Y F)

Y is a fixed point combinator under which
evaluation order?

A. Call-by-value
B. Call-by-name
C. Both
D. Neither

In CBV, we expand
Y F = F (Y F) = F (F (Y F)) … indefinitely, for any F

CMSC 330 Fall 2019

24

The Z Combinator: For CBV languages

Z = λf.(λx.f (λv.x x v)) (λx.f (λv.x x v))
Then
Z F x =
(λf.(λx.f (λv.x x v)) (λx.f (λv.x x v))) F →
(λx.F (λv.x x v)) (λx.F (λv.x x v)) →
F (λv. (λx.F (λv.x x v)) (λx.F (λv.x x v)) v)
F ((λx.F (λv.x x v)) (λx.F (λv.x x v)))
= F (Z F)

CMSC 330 Fall 2019

25

Discussion

Lambda calculus is Turing-complete
• Most powerful language possible
• Can represent pretty much anything in “real” language

Ø Using clever encodings

But programs would be
• Pretty slow (10000 + 1 → thousands of function calls)
• Pretty large (10000 + 1 → hundreds of lines of code)
• Pretty hard to understand (recognize 10000 vs. 9999)

In practice
• We use richer, more expressive languages
• That include built-in primitives

CMSC 330 Fall 2019

26

The Need For Types
Consider the untyped lambda calculus
• false = λx.λy.y
• 0 = λx.λy.y

Since everything is encoded as a function...
• We can easily misuse terms…

Ø false 0 → λy.y
Ø if 0 then ...

…because everything evaluates to some function
The same thing happens in assembly language
• Everything is a machine word (a bunch of bits)
• All operations take machine words to machine words

CMSC 330 Fall 2019

27

Simply-Typed Lambda Calculus (STLC)

e ::= n | x | λx:t.e | e e
• Added integers n as primitives

Ø Need at least two distinct types (integer & function)…
Ø …to have type errors

• Functions now include the type t of their argument

t ::= int | t → t
• int is the type of integers
• t1 → t2 is the type of a function

Ø That takes arguments of type t1 and returns result of type t2

CMSC 330 Fall 2019

Types are limiting

STLC will reject some terms as ill-typed, even if
they will not produce a run-time error
• Cannot type check Y in STLC

Ø Or in OCaml, for that matter, at least not as written earlier.

Surprising theorem: All (well typed) simply-typed
lambda calculus terms are strongly normalizing
• A normal form is one that cannot be reduced further

Ø A value is a kind of normal form

• Strong normalization means STLC terms always
terminate
Ø Proof is not by straightforward induction: Applications

“increase” term size
28CMSC 330 Fall 2019

29

Summary

Lambda calculus is a core model of computation
• We can encode familiar language constructs using

only functions
Ø These encodings are enlightening – make you a better

(functional) programmer

Useful for understanding how languages work
• Ideas of types, evaluation order, termination, proof

systems, etc. can be developed in lambda calculus,
Ø then scaled to full languages

CMSC 330 Fall 2019

Quiz 4

What is a normal form?

a) The point at which an expression cannot
reduce any further
b) The point at which it is clear that an expression
will reduce infinitely
c) The original form of the lambda expression
d) The form reached after one reduction

30CMSC 330 Fall 2019

Quiz 4

What is a normal form?

a) The point at which an expression cannot
reduce any further
b) The point at which it is clear that an expression
will reduce infinitely
c) The original form of the lambda expression
d) The form reached after one reduction

31CMSC 330 Fall 2019

Quiz 5
What feature does the (untyped) lambda calculus
require to make it Turing complete?

a) Types
b) Natural numbers
c) Fixed point combinator
d) It already is Turing complete

32CMSC 330 Fall 2019

Quiz 5
What feature does the (untyped) lambda calculus
require to make it Turing complete?

a) Types
b) Natural numbers
c) Fixed point combinator
d) It already is Turing complete

33CMSC 330 Fall 2019

