
CMSC 330: Organization of
Programming Languages

Code Blocks

1CMSC 330 - Fall 2019

Code Blocks

A code block is a piece of code that is invoked
by another piece of code

Code blocks are useful for encapsulating
repetitive computations

2CMSC 330 - Fall 2019

Array Iteration with Code Blocks

The Array class has an each method
• Takes a code block as an argument

a = [1,2,3,4,5]
a.each { |x| puts x }

code block delimited by
{ }�s or do...end parameter name

(optional)

body

3CMSC 330 - Fall 2019

So, What Are Code Blocks?

A code block is a special kind of method
• { |y| x = y + 1; puts x } is almost the same as
• def m(y) x = y + 1; puts x end

The each method invokes the given code block
• This is called higher-order programming

Ø In other words, methods take other methods as arguments

4CMSC 330 - Fall 2019

Quiz 1: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.each { |x| x = x*x }
puts a[1]

5CMSC 330 - Fall 2019

Quiz 1: What is the output

A. 10 – the array itself is not modified by each
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.each { |x| x = x*x }
puts a[1]

6CMSC 330 - Fall 2019

More Code Blocks for Arrays
Sum up the elements of an array with each

a.find returns first element of a for which the
block returns true

a.collect applies block to each element of a
and returns new array; collect! modifies a

a = [1,2,3,4,5]
sum = 0
a.each { |x| sum = sum + x }
printf("sum is %d\n", sum)

7CMSC 330 - Fall 2019

[1,2,3,4,5].find { |y| y % 2 == 0 }
[5,4,3].collect { |x| -x }

Quiz 2: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.collect! { |x| x*x }
puts a[1]

8CMSC 330 - Fall 2019

Quiz 2: What is the output

A. 10
B. 100
C. (Nothing)
D. Error

a = [5,10,15,20]
a.collect! { |x| x*x }
puts a[1]

9CMSC 330 - Fall 2019

Code Blocks for Numbers, Strings

• n.times runs code block n times

• n.upto(m) runs code block for integers n..m

• s.split(x) splits the string according to delimiter x,
invoking the code block on each segment

3.times { puts "hello"; puts "goodbye" }
5.upto(10) { |x| puts(x + 1) }

10CMSC 330 - Fall 2019

s = "Student,Sally,099112233,A"
s.split(',').each { |x| puts x }

(�delimiter� = symbol used to denote boundaries)

Code Blocks for Files

• open method takes code block with file argument
Ø File automatically closed after block executed

• readlines reads all lines from a file and returns an
array of the lines read
Ø Use each to iterate

• Can do something similar on strings directly:
• "r1\nr2\n\nr4".each_line { |rec| puts rec }

Ø Apply code block to each newline-separated substring

File.open("test.txt", "r") do |f|
f.readlines.each { |line| puts line }

end

11

alternative syntax: do … end instead of { … }

CMSC 330 - Fall 2019

Standard Library: File

Lots of convenient methods for IO
File.new("file.txt", "rw") # open for rw access
f.readline # reads the next line from a file
f.readlines # returns an array of all file lines
f.eof # return true if at end of file
f.close # close file
f << object # convert object to string and write to f
$stdin, $stdout, $stderr # global variables for standard UNIX IO

By default stdin reads from keyboard, and stdout and stderr both
write to terminal

File inherits some of these methods from IO

12CMSC 330 - Fall 2019

Code Blocks for Hashes

Can iterate over keys and values separately
population.keys.each { |k|

print “key: ”, k, “ value: ”, population[k]
}

popluation.values.each { |v|
print “value: ”, v

}

13

population = {}
population[“USA”] = 319
population[“Italy”] = 60
population.each { |c,p|

puts “population of #{c} is #{p} million”
}

key

value

CMSC 330 - Fall 2019

Code Blocks are not Objects

Code blocks are limited in their use
• They cannot be stored in variables, or passed to or

returned from methods

Only code block literals are permitted, and can
only be passed as the last “argument”
• And only one code block, at that (not 2, 3, …)

What about calling them from your methods?
CMSC 330 - Fall 2019 14

a = [1,2,3]
a.collect! { |z| z+1 } # ok
y = { |z| z+1 } # syntax error
a.collect! y # syntax error

Using Yield to Call Code Blocks
Any method call can include a code block
• Inside the method, the block is called with yield

After the code block completes
• Control returns to the caller after the yield instruction
def countx(x)

for i in (1..x)
puts i
yield

end
end

countx(4) { puts "foo" }

1
foo
2
foo
3
foo
4
foo

15CMSC 330 - Fall 2019

Yield Can Take an Argument

• It can take any number of arguments
Ø Code block {|x,y| …} invoked via yield arg1,arg2
Ø Code block {|x,y,z| … } would be invoked via
yield arg1,arg2,arg3

Ø Etc.

CMSC 330 - Fall 2019 16

def do_it_twice
return "No block" unless block_given?
yield "hello"
yield "there"

end

do_it_twice { |x| puts x } hello
there

Quiz 3: What is the output

A. 3
B. 3 9
C. 9 81
D. 9 nil

def myFun(x)
yield x

end
myFun(3) { |v| puts "#{v} #{v*v}” }

17CMSC 330 - Fall 2019

Quiz 3: What is the output

A. 3
B. 3 9
C. 9 81
D. 9 nil

def myFun(x)
yield x

end
myFun(3) { |v| puts "#{v} #{v*v}” }

18CMSC 330 - Fall 2019

Procs: First-class “code blocks”
Proc can make an object out of a code block
• t = Proc.new {|x| x+2}

Proc objects can be passed around, stored, and
have their code invoked via call

CMSC 330 - Fall 2019 19

def say(p)
p.call 10

end

puts say(t) 12

Procs are a Little Clumsy

Stringing them together is a little (syntactically)
heavyweight
• We will see with OCaml a better integration into the

language

CMSC 330 - Fall 2019 20

def say(y)
t = Proc.new {|x| Proc.new {|z| z+x+y }}
return t

end
s = say(2).call(3)
puts s.call(4)

9

Procs vs. code blocks

Lightweight syntax
Common in libraries,
programming idioms

“Second class” status
• Can only be last, implicit

function argument, as a
literal

• Can invoke only from
within called method

Ø Can’t make one and call it in
the same method

CMSC 330 - Fall 2019 21

Code block
Heavier-weight syntax:
Must make a Proc from
code block first
Not commonly used in
standard libraries

“First class” status
• Can pass as argument (or

more than one), return as
result, store in fields, etc.

• Call anywhere, directly

Proc

Exceptions

Use begin...rescue...ensure...end
• Like try...catch...finally in Java

begin
f = File.open("test.txt", "r")
while !f.eof

line = f.readline
puts line

end
rescue Exception => e

puts "Exception:" + e.to_s +
" (class " + e.class.to_s + ")�

ensure
f.close if f != nil

end

Class of exception
to catch

Local name
for exception

Always happens

22CMSC 330 - Fall 2019

Command Line Arguments

Stored in predefined global constant ARGV

Example
• If

Ø Invoke test.rb as �ruby test.rb a b c�
• Then

Ø ARGV[0] = �a�
Ø ARGV[1] = �b�
Ø ARGV[2] = �c�

23CMSC 330 - Fall 2019

