CMSC 330: Organization of Programming
Languages

Ownership, References, and Lifetimes
iIn Rust

Memory: the Stack and the Heap

 The stack

— constant-time, automatic (de)allocation

— Data size and lifetime must be known at compile-time
* Function parameters and locals of known (constant) size

 The heap
— Dynamically sized data, with non-fixed lifetime
- Slightly slower to access than stack; i.e., via a pointer
— GC: automatic deallocation, adds space/time overhead

— Manual deallocation (C/C++): low overhead, but non-trivial
opportunity for devastating bugs

» Dangling pointers, double free — instances of memory corruption

Memory: the Stack and the Heap

Il C stack
char *p = malloc(10)

free (p) ;

/Il Java
String p = new String(”rust");

null ;//GC will collect later /

p:

heap

p is deleted from stack when the function terminates

Memory Management Errors

« May forget to free memory (memory leak)

{ int *x = (int *) malloc(sizeof(int)); }
« May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();
free (x) ;

x = 5; / oops! */
}
« May try to free something twice (double free)

{ int *x = ...malloc(); free(x), free(x); }
» This may corrupt the memory management data structures

— E.g., the memory allocator maintains a free list of space on the
heap that’s available

GC-less Memory Management, Safely

* Rust’'s heap memory managed without GC

* Type checking ensures no dangling pointers or double
frees
— unsafe idioms are disallowed
— memory leaks not prevented (not a safety problem)

« Key features of Rust that ensure safety: ownership and
lifetimes

— Data has a single owner. Immutable aliases OK, but mutation
only via owner or single mutable reference

— How long data is alive is determined by a lifetime

Memory: the Stack and the Heap

stack
/| Rust
let p = String::from("hello”); o
 Deleted when the owner p
Is out of scope.
 No manual free, no GC
heap

p is deleted from stack when the function terminates

Ownership

Only one “owner” of an object

 When the “owner” of the object goes out of scope, its data is
automatically freed. No Garbage collection

e Can not access object beyond its lifetime (checked at compile-
time)

fn foo () {
let mut res = Box::new(Pair {
a: 0, a=42
b: 0 b=0
}) g heap
res.a = 42;

stack

Rules of Ownership

1. Each value in Rust has a variable that’s its owner

2. There can only be one owner at a time
3. When the owner goes out of scope, the value will be
dropped (freed)

String: Dynamically sized, mutable data

{
let mut s = String::from("hello") ;

s.push str(", world!"); //appends to s

println! ("{}", s);
} //s’'s data is freed by calling s.drop()

e s is the owner of this data

— When s goes out of scope, its drop method is
called, which frees the data

Assignment Transfers Ownership

* Heap allocated data is copied by reference

let x
let y

String::from("hello")
x; //x moved to y

.
14

— Both x and y point to the same underlying data

e A move

x’S data
"hello"

y’sdata///;7

eaves only one owner:. y

Avoids double
free () !

println! ("{}, world!'", y), //ok
println! ("{}, world!", x),; //fa

ils

10

Deep Copying Retains Ownership

« Make clones (copies) to avoid ownership loss

let x = String::from("hello");

let y = x.clone(); //x no longer moved
println! ("{}, world!", y); //ok
println! ("{}, world!", x); //ok

* Primitives copied automatically
- 132, char, bool, £32, tuples of these types, etc.

let x = 5;
let yv = x;
println! ("{}
println! ("{}

5'", y); //ok
51", x); //ok

« These have the Copy trait; more on traits later

11

Ownership Transfer in Function Calls

fn main() {
let sl = String::from(“hello”) ;

let s2 = id(sl); //sl moved to arg
println! (“{}”,s2); //id’'s result moved to s2

println! (“{}”,sl); //fails
}

fn id(s:String) -> String {
s // s moved to caller, on return

}

* On a call, ownership passes from:
— argument to called function’s parameter
— returned value to caller’s receiver

12

References and Borrowing

* Create an alias by making a reference

— An explicit, non-owning pointer to the original value
— Called borrowing. Done with & operator

* References are immutable by default

fn main() {

let sl = String::from(“hello”) ;

let len = calc len(é&sl); //lends pointer
println! (“the length of ‘{}’ is {}”,sl,len);
}
fn calc len(s: &String) -> usize {

s.push str(“hi”); //fails! refs are immutable
s.len() // s dropped; but not its referent
}

Quiz 1: Owner of s data at HERE ?

fn foo(s:String) -> usize {

let x = s;
let y = &x
let z = x;
let w = &y
\\ HERE

14

Quiz 1: Owner of s data at HERE ?

fn foo(s:String) -> usize {

let x = s;
let y = &x
let z = x;
let w = &y
\\ HERE

15

Rules of References

1. At any given time, you can have either but not both of
— One mutable reference
— Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

16

Borrowing and Mutation

 Make immutable references to mutable values
— Shares read-only access through owner and borrowed

references
« Same for immutable values

— Mutation disallowed on original value until borrowed
reference(s) dropped

{ let mut sl = String::from(“hello”) ;
{ let s2 = &sl;
println! ("String is {} and {}",sl,s2); //ok
sl.push str(" world!"); //disallowed
} //drops s2

sl.push str(" world!"); //ok
println! ("String is {}",sl);}//prints updated sl

17

Mutable references

« To permit mutation via a reference, use &mut
— Instead of just &

— But only OK for mutable variables

let mut sl = String::from(“hello”);
{ let s2 = &sl;

s2.push str(“ there”);//disallowed; s2 immut
} //s2 dropped
let s3 = &mut sl; //ok since sl mutable
s3.push str(“ there”); //ok since s3 mutable
println! (”String is {}”,s3); //ok

Quiz 2: What does this evaluate to?

{ let mut sl = String::from(“Hello!"“) ;
{
let s2 = &sl;
s2.push str(“World!'");
println! (“{}", s2)
}

}

A. “Hello!”
B. “Hello! World!”
C. Error

D. “Hello!'World!”

19

Quiz 2: What does this evaluate to?

{ let mut sl = String::from(“Hello!"“) ;
{
let s2 = &sl;
s2.push str(“World!'");
println! (“{}", s2)
}

(S

“Hello!”
“Hello! World!”

. Error; s2 is not mut
. “Hello!'World!”

OO0 w>

20

Quiz 3: What is printed?

fn foo(s: &mut String) -> usize{
s.push_str("Bob") ;
s.len ()

}

fn main() {
let mut sl = String::from("Alice");
println! ("{}",foo (&mut sl))

21

Quiz 3: What is printed?

fn foo(s: &mut String) -> usize{
s.push_str("Bob") ;
s.len ()

}

fn main() {
let mut sl = String::from("Alice");
println! ("{}",foo (&mut sl))

22

Ownership and Mutable References

Can make only one mutable reference

* Doing so blocks use of the original
— Restored when reference is dropped

let mut sl = String::from(“hello”);
{ let s2 e&mut sl; //ok

t s3 emut sl; //fails: second borrow
ush str(“ there”); //fails: second borrow
} //s2 dropped; sl is first-class owner again

sl.push str(“ there”); //ok
println! (”“String is {}”,sl); //ok

implicit borrow
(self is a reference)

Immutable and Mutable References

Cannot make a mutable reference if immutable
references exist

— Holders of an immutable reference assume the object will not
change from under them!

let mut sl = String::from(“hello”);

{ let s2 = &sl; //ok: s2 is immutable
let s3 = &sl; //ok: multiple imm. refs allowed
let s4 = gmut sl; //fails: imm ref already

} //s2-s4 dropped; sl is owner again
sl.push str(“ there”); //ok
println! (”“String is {}”,sl); //ok

24

Aside: Generics and Polymorphism

* Rust has support like that of Java and OCaml
— Example: The std library defines Vec<T> where T can be

instantiated with a variety of types
« Vec<char> is a vector of characters
« Vec<&str> is a vector of string slices

* You can define polymorphic functions, too

— Rust: fn id<T>(x:T) -> T { x }
— Java: static <T> T id(T x) { return x; }
— Ocaml: let id x = x

« More later...

25

Dangling References

References must always be to valid memory

Not to memory that has been dropped

fn main() {
let ref invalid = dangle();

println! (“what will happen .. {}”,ref invalid);
}
fn dangle() -> &String {

let sl = String::from(“hello”) ;
&sl

} // bad! sl’s value has been dropped

— Rust type checker will disallow this using a concept called

lifetimes

« A lifetime is a type-level parameter that names the scope in which the data

is valid

26

Lifetimes: Preventing Dangling Refs

* Another way to view our prior example

{

}

let r;

{
let x = 5;
r = &xX;

}

println! (“r:

// deferred init

{}",xr); //fails

—_—

_ r’s lifetime ‘a

} x’s lifetime ‘b

Issue:

—

re—xbutas®

« The Rust type checker observes that x goes out of scope
while r still exists

— A lifetime is a type variable that identifies a scope
— r’s lifetime ‘a exceeds x’s lifetime ‘b

27

Lifetimes and Functions

 Lifetime of a reference not always visible
— E.g., when passed as an argument to a function

fn longest(x:&str, y:&str) ->(&sty {
if x.1len() > y.1len() { x } else { y }

}

— What could go wrong here?

{ let x = String::from(“hi”) ;
let z;
{ let y = String: :from(“there”) ;
z = longest(&x,&y); //will be &y
} //drop y, and thereby =z
println! (“z = {}”,z);//yikes!
}

String slice
(more later)

28

Quiz 4: What is printed?

{ let mut s = &String::from("dog") ;
{
let y = String::from("hi") ;
s = &y;
}
println! ("s: {}",s);
}

A. dog

B. hi

C. Error —y is immutable

D. Error — y dropped while still borrowed

29

Quiz 4: What is printed?

{ let mut s = &String::from("dog") ;
{
let y = String::from("hi") ;
s = &y;
}
println! ("s: {}",s);
}

A. dog

B. hi

C. Error —y is immutable

D. Error — y dropped while still borrowed

30

Recap: Rules of References

1. At any given time, you can have either but not both of
— One mutable reference
— Any number of immutable references

2. References must always be valid
— A reference must never outlive its referent

33

Traits Overview

 Traits allow us to abstract behavior that types can have in
common

— In situations where we use generic type parameters, we can use
trait bounds to specify that the generic type must implement a
trait

* Traits are a bit like Java interfaces

— But we can implement traits over any type, anywhere in the code,
not only at the point we define the type

34

Defining a Trait

* Here is a trait with a single function

pub trait Summarizable {
fn summary (&self) -> String;

}

— Specify &self for “instance” methods

* Note: can also specify “associated” methods
— Like static methods in Java

— Equivalent in Java:

public interface Summarizable ({
String summary () ;

}

35

Implementing a Trait on a Type

| type on which we are
name of trait |mplementing it

implz Summarizable) for
fn s &self) -> ring {

let &(x,y) = self;
format! ("{}",x+y) trait method body

}
} trait method invocation

fn foo () { «
let y (1,2)@;); //73"”
let z (1,2,3) -5um ary();//fails

36

Default Implementations

* Here is a trait with a default implementation

pub trait Summarizable ({
fn summary (&self) -> String {}

String: :from(“none”) default
} impol
} Impl uses default

impl Summarizable for (i32,i32,i32)<{};
fn foo () {

let v = (1,2) .summary(); //”3”

let z = (1,2,3) .summary () ;//”"none”
}

37

Trait Bounds

+ With generics, you can specify that a type variable
must implement a trait

pub fn notify<T: Summarizable>(item: T) {
println! ("Breaking news! {}",
item.summary()) ;

}

— This method works on any type T that implements the
Summarizable trait

« Can specify multiple Trait Bounds using +

fn foo<T:Clone + Summarizable>(..) -> i32 {..} or

fn foo<T>(..) -> i32 where T:Clone + Summarizable {..}

38

Standard Traits

* We have seen several standard traits already
— Clone holds if the object has a clone() method
— Copy holds if you can copy it
* |.e., it's a primitive
— Deref holds if you can dereference it
 l.e., it's areference
* There are other useful ones too
- Display if it can be converted to a string
— PartialOrd if it implements a comparison operator

39

Putting all Together

* Finds the largest element in an array slice
— Generic in the type T of the contents of the array

{
let mut largest = 1list[O0];

for &item i ist.iter () {

}

} Requires PartialOrd
largest trait

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T

if ite est {
lar t@t@]ﬁ"— Requires Copy trait

40

Putting all Together

* Finds the largest element in an array slice
— Generic in the type T of the contents of the array

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T
{..}

fn main() {
let number list = vec![34, 50, 25, 100, 65];
let result = largest(&number list);
println! ("The largest number is {}", result);
let char list = vec!['y', 'm', 'a', 'q'];
let result = largest(&char list);
println! ("The largest char is {}", result);

}

prints The largest number is 100

The largest char is y

41

Notes

 Trait implementations can be generic too
pub trait Queue<T> {
fn enqueue (&mut self, ele: T) -> (),

}
impl <T> Queue<T> for Vec<T> {

fn enqueue (&mut self, ele:T) -> () {..}

}

* (Generic method implementations of structs and
enums can include trait bounds

42

