
CMSC 330: Organization of Programming
Languages

Ownership, References, and Lifetimes
in Rust

2

Memory: the Stack and the Heap
• The stack

– constant-time, automatic (de)allocation
– Data size and lifetime must be known at compile-time

• Function parameters and locals of known (constant) size

• The heap
– Dynamically sized data, with non-fixed lifetime

• Slightly slower to access than stack; i.e., via a pointer
– GC: automatic deallocation, adds space/time overhead
– Manual deallocation (C/C++): low overhead, but non-trivial

opportunity for devastating bugs
• Dangling pointers, double free – instances of memory corruption

Memory: the Stack and the Heap

3

// C
char *p = malloc(10)
…
free(p);

stack

heap

p

// Java
String p = new String(”rust");
…
p = null;//GC will collect later

p is deleted from stack when the function terminates

4

Memory Management Errors

• May forget to free memory (memory leak)
{ int *x = (int *) malloc(sizeof(int)); }

• May retain ptr to freed memory (dangling pointer)
{ int *x = ...malloc();
free(x);
x = 5; / oops! */

}

• May try to free something twice (double free)
{ int *x = ...malloc(); free(x); free(x); }
• This may corrupt the memory management data structures

– E.g., the memory allocator maintains a free list of space on the
heap that’s available

GC-less Memory Management, Safely

• Rust’s heap memory managed without GC
• Type checking ensures no dangling pointers or double

frees
– unsafe idioms are disallowed
– memory leaks not prevented (not a safety problem)

• Key features of Rust that ensure safety: ownership and
lifetimes
– Data has a single owner. Immutable aliases OK, but mutation

only via owner or single mutable reference
– How long data is alive is determined by a lifetime

5

Memory: the Stack and the Heap

6

// Rust
let p = String::from("hello”);
…

stack

heap

p

p is deleted from stack when the function terminates

• Deleted when the owner p
is out of scope.

• No manual free, no GC

Ownership

7

Only one “owner” of an object
• When the “owner” of the object goes out of scope, its data is

automatically freed. No Garbage collection
• Can not access object beyond its lifetime (checked at compile-

time)

fn foo() {
let mut res = Box::new(Pair {

a: 0,
b: 0

});
res.a = 42;

}

a=42

b=0

heap

res

stack

Rules of Ownership

1. Each value in Rust has a variable that’s its owner
2. There can only be one owner at a time
3. When the owner goes out of scope, the value will be

dropped (freed)

8

String: Dynamically sized, mutable data

• s is the owner of this data
– When s goes out of scope, its drop method is

called, which frees the data

9

{
let mut s = String::from("hello");

s.push_str(", world!"); //appends to s

println!("{}", s);
} //s’s data is freed by calling s.drop()

10

Assignment Transfers Ownership

• Heap allocated data is copied by reference

– Both x and y point to the same underlying data

• A move leaves only one owner: y

let x = String::from("hello");
let y = x; //x moved to y

x’s data

y’s data

println!("{}, world!", y); //ok
println!("{}, world!", x); //fails

Avoids double
free()!

"hello"

Deep Copying Retains Ownership

• Make clones (copies) to avoid ownership loss

• Primitives copied automatically
– i32, char, bool, f32, tuples of these types, etc.

• These have the Copy trait; more on traits later

11

let x = String::from("hello");
let y = x.clone(); //x no longer moved
println!("{}, world!", y); //ok
println!("{}, world!", x); //ok

let x = 5;
let y = x;
println!("{} = 5!", y); //ok
println!("{} = 5!", x); //ok

Ownership Transfer in Function Calls

• On a call, ownership passes from:
– argument to called function’s parameter
– returned value to caller’s receiver

12

fn main() {
let s1 = String::from(“hello”);
let s2 = id(s1); //s1 moved to arg
println!(“{}”,s2); //id’s result moved to s2
println!(“{}”,s1); //fails

}

fn id(s:String) -> String {
s // s moved to caller, on return

}

References and Borrowing
• Create an alias by making a reference

– An explicit, non-owning pointer to the original value
– Called borrowing. Done with & operator

• References are immutable by default

13

fn main() {
let s1 = String::from(“hello”);
let len = calc_len(&s1); //lends pointer
println!(“the length of ‘{}’ is {}”,s1,len);
}
fn calc_len(s: &String) -> usize {
s.push_str(“hi”); //fails! refs are immutable
s.len() // s dropped; but not its referent
}

A. x
B. y
C. z
D. w

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y;
\\ HERE

}

14

Quiz 1: Owner of s data at HERE ?

A. x
B. y
C. z
D. w

fn foo(s:String) -> usize {
let x = s;
let y = &x;
let z = x;
let w = &y;
\\ HERE

}

15

Quiz 1: Owner of s data at HERE ?

Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid (pointed-to value not
dropped)

16

Borrowing and Mutation
• Make immutable references to mutable values

– Shares read-only access through owner and borrowed
references

• Same for immutable values
– Mutation disallowed on original value until borrowed

reference(s) dropped

17

{ let mut s1 = String::from(“hello”);
{ let s2 = &s1;
println!("String is {} and {}",s1,s2); //ok
s1.push_str(" world!"); //disallowed

} //drops s2
s1.push_str(" world!"); //ok
println!("String is {}",s1);}//prints updated s1

Mutable references

• To permit mutation via a reference, use &mut
– Instead of just &
– But only OK for mutable variables

18

let mut s1 = String::from(“hello”);
{ let s2 = &s1;
s2.push_str(“ there”);//disallowed; s2 immut

} //s2 dropped
let s3 = &mut s1; //ok since s1 mutable
s3.push_str(“ there”); //ok since s3 mutable
println!(”String is {}”,s3); //ok

A. “Hello!”
B. “Hello! World!”
C. Error
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

19

Quiz 2: What does this evaluate to?

A. “Hello!”
B. “Hello! World!”
C. Error; s2 is not mut
D. “Hello!World!”

{ let mut s1 = String::from(“Hello!“);
{
let s2 = &s1;
s2.push_str(“World!“);
println!(“{}“, s2)

}
}

20

Quiz 2: What does this evaluate to?

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

21

Quiz 3: What is printed?

A. 0
B. 8
C. Error
D. 5

fn foo(s: &mut String) -> usize{
s.push_str("Bob");
s.len()

}
fn main() {

let mut s1 = String::from("Alice");
println!("{}",foo(&mut s1))

}

22

Quiz 3: What is printed?

Ownership and Mutable References

• Can make only one mutable reference
• Doing so blocks use of the original

– Restored when reference is dropped

23

let mut s1 = String::from(“hello”);
{ let s2 = &mut s1; //ok
let s3 = &mut s1; //fails: second borrow
s1.push_str(“ there”); //fails: second borrow

} //s2 dropped; s1 is first-class owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

implicit borrow
(self is a reference)

Immutable and Mutable References

• Cannot make a mutable reference if immutable
references exist
– Holders of an immutable reference assume the object will not

change from under them!

24

let mut s1 = String::from(“hello”);
{ let s2 = &s1; //ok: s2 is immutable
let s3 = &s1; //ok: multiple imm. refs allowed
let s4 = &mut s1; //fails: imm ref already

} //s2-s4 dropped; s1 is owner again
s1.push_str(“ there”); //ok
println!(”String is {}”,s1); //ok

Aside: Generics and Polymorphism

• Rust has support like that of Java and OCaml
– Example: The std library defines Vec<T> where T can be

instantiated with a variety of types
• Vec<char> is a vector of characters
• Vec<&str> is a vector of string slices

• You can define polymorphic functions, too
– Rust:
– Java:
– Ocaml:

• More later…
25

fn id<T>(x:T) -> T { x }

let id x = x

static <T> T id(T x) { return x; }

Dangling References

• References must always be to valid memory
– Not to memory that has been dropped

– Rust type checker will disallow this using a concept called
lifetimes

• A lifetime is a type-level parameter that names the scope in which the data
is valid

26

fn main() {
let ref_invalid = dangle();
println!(“what will happen … {}”,ref_invalid);

}
fn dangle() -> &String {
let s1 = String::from(“hello”);
&s1

} // bad! s1’s value has been dropped

Lifetimes: Preventing Dangling Refs

• Another way to view our prior example

• The Rust type checker observes that x goes out of scope
while r still exists
– A lifetime is a type variable that identifies a scope
– r’s lifetime ‘a exceeds x’s lifetime ‘b

27

{
let r; // deferred init
{
let x = 5;
r = &x;

}
println!(“r: {}”,r); //fails

}

x’s lifetime ‘b
r’s lifetime ‘a

Issue:
r ⟵ x but ‘a ≰ ‘b

Lifetimes and Functions

• Lifetime of a reference not always visible
– E.g., when passed as an argument to a function

– What could go wrong here?

28

fn longest(x:&str, y:&str) -> &str {
if x.len() > y.len() { x } else { y }

}

{ let x = String::from(“hi”);
let z;
{ let y = String::from(“there”);
z = longest(&x,&y); //will be &y

} //drop y, and thereby z
println!(“z = {}”,z);//yikes!

}

String slice
(more later)

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

{ let mut s = &String::from("dog");
{

let y = String::from("hi");
s = &y;

}
println!("s: {}",s);

}

29

Quiz 4: What is printed?

30

Quiz 4: What is printed?

{ let mut s = &String::from("dog");
{

let y = String::from("hi");
s = &y;

}
println!("s: {}",s);

}

A. dog
B. hi
C. Error – y is immutable
D. Error – y dropped while still borrowed

Recap: Rules of References

1. At any given time, you can have either but not both of
– One mutable reference
– Any number of immutable references

2. References must always be valid
– A reference must never outlive its referent

33

Traits Overview

• Traits allow us to abstract behavior that types can have in
common
– In situations where we use generic type parameters, we can use

trait bounds to specify that the generic type must implement a
trait

• Traits are a bit like Java interfaces
– But we can implement traits over any type, anywhere in the code,

not only at the point we define the type

34

Defining a Trait

• Here is a trait with a single function

– Specify &self for “instance” methods
• Note: can also specify “associated” methods

– Like static methods in Java

– Equivalent in Java:

35

pub trait Summarizable {
fn summary(&self) -> String;

}

public interface Summarizable {
String summary();

}

Implementing a Trait on a Type

36

impl Summarizable for (i32,i32) {
fn summary(&self) -> String {

let &(x,y) = self;
format!("{}",x+y)

}
}
fn foo() {

let y = (1,2).summary(); //”3”
let z = (1,2,3).summary();//fails

}

name of trait
type on which we are
implementing it

trait method invocation

trait method body

Default Implementations

• Here is a trait with a default implementation

37

pub trait Summarizable {
fn summary(&self) -> String {
String::from(“none”)

}
}

impl Summarizable for (i32,i32,i32) {}
fn foo() {

let y = (1,2).summary(); //”3”
let z = (1,2,3).summary();//”none”

}

default
impl

Impl uses default

Trait Bounds

• With generics, you can specify that a type variable
must implement a trait

– This method works on any type T that implements the
Summarizable trait

• Can specify multiple Trait Bounds using +
fn foo<T:Clone + Summarizable>(…) -> i32 {…} or
fn foo<T>(…) -> i32 where T:Clone + Summarizable {…}

38

pub fn notify<T: Summarizable>(item: T) {
println!("Breaking news! {}",

item.summary());
}

Standard Traits

• We have seen several standard traits already
– Clone holds if the object has a clone() method
– Copy holds if you can copy it

• I.e., it’s a primitive
– Deref holds if you can dereference it

• I.e., it’s a reference

• There are other useful ones too
– Display if it can be converted to a string
– PartialOrd if it implements a comparison operator

39

Putting all Together

• Finds the largest element in an array slice
– Generic in the type T of the contents of the array

40

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T
{

let mut largest = list[0];
for &item in list.iter() {

if item > largest {
largest = item;

}
}
largest

}

Requires PartialOrd
trait

Requires Copy trait

Putting all Together

• Finds the largest element in an array slice
– Generic in the type T of the contents of the array

prints The largest number is 100
The largest char is y 41

fn largest<T: PartialOrd + Copy>(list: &[T]) -> T
{…}
fn main() {

let number_list = vec![34, 50, 25, 100, 65];
let result = largest(&number_list);
println!("The largest number is {}", result);
let char_list = vec!['y', 'm', 'a', 'q'];
let result = largest(&char_list);
println!("The largest char is {}", result);

}

Notes

• Trait implementations can be generic too
pub trait Queue<T> {

fn enqueue(&mut self, ele: T) -> (); …

}
impl <T> Queue<T> for Vec<T> {

fn enqueue(&mut self, ele:T) -> () {…} …
}

• Generic method implementations of structs and
enums can include trait bounds

42

