CMSC 330: Organization of Programming Languages

Parsing
Recall: Front End Scanner and Parser

- **Scanner / lexer / tokenizer** converts program source into **tokens** (keywords, variable names, operators, numbers, etc.) with **regular expressions**.
- **Parser** converts tokens into an **AST** (abstract syntax tree) based on a **context free grammar**.
Scanning (“tokenizing”)

- Converts textual input into a stream of tokens
 - These are the terminals in the parser’s CFG
 - Example tokens are keywords, identifiers, numbers, punctuation, etc.
- Tokens determined with regular expressions
 - Identifiers match regexp [a-zA-Z_][a-zA-Z0-9_]*
 - Non-negative integers match [0-9]+
 - Etc.
- Scanner typically ignores/eliminates whitespace
A Scanner in OCaml

type token =
 Tok_Num of char
 | Tok_Sum
 | Tok_END

let tokenize (s:string) = ...
 (* returns token list *)

;;

let re_num = Str.regexp "[0-9]" (* single digit *)
let re_add = Str.regexp "+"
let tokenize str =
 let rec tok pos s =
 if pos >= String.length s then
 [Tok_END]
 else
 if (Str.string_match re_num s pos) then
 let token = Str.matched_string s in
 (Tok_Num token.[0]):(tok (pos+1) s)
 else if (Str.string_match re_add s pos) then
 Tok_Sum:(tok (pos+1) s)
 else
 raise (IllegalExpression "tokenize")
in
 tok 0 str

tokenize "1+2" =
 [Tok_Num '1';
 Tok_Sum;
 Tok_Num '2';
 Tok_END]

Uses Str
library
module
for
regexps
Implementing Parsers

Many efficient techniques for parsing
- LL(k), SLR(k), LR(k), LALR(k)…
- Take CMSC 430 for more details

One simple technique: recursive descent parsing
- This is a top-down parsing algorithm

Other algorithms are bottom-up
Top-Down Parsing (Intuition)

\[E \rightarrow \text{id} = n \mid \{ \text{L} \} \]
\[\text{L} \rightarrow \text{E} \; ; \; \text{L} \mid \varepsilon \]

(Assume: id is variable name, n is integer)

Show parse tree for
\{ x = 3 ; \{ y = 4 ; \} ; \}
Bottom-up Parsing (Intuition)

E → id = n | { L }
L → E ; L | ε

Show parse tree for
{ x = 3 ; { y = 4 ; } ; }

Note that final trees constructed are same as for top-down; only order in which nodes are added to tree is different
BU Example: Shift-Reduce Parsing

- Replaces RHS of production with LHS (nonterminal)

Example grammar
- S → aA, A → Bc, B → b

Example parse
- abc ⇒ aBc ⇒ aA ⇒ S
- Derivation happens in reverse

Complicated to use; requires tool support
- Bison, yacc produce shift-reduce parsers from CFGs
Tradeoffs

- Recursive descent parsers
 - Easy to write
 - The formal definition is a little clunky, but if you follow the code then it’s almost what you might have done if you weren't told about grammars formally
 - Fast
 - Can be implemented with a simple table
- Shift-reduce parsers handle more grammars
 - Error messages may be confusing
- Most languages use hacked parsers (!)
 - Strange combination of the two
Recursive Descent Parsing

Goal

- Can we “parse” a string – does it match our grammar?
 - We will talk about constructing an AST later

Approach: Perform parse

- Replace each non-terminal A by the rhs of a production $A \rightarrow rhs$
- And/or match each terminal against token in input
- Repeat until input consumed, or failure
Recursive Descent Parsing (cont.)

- At each step, we'll keep track of two facts
 - What grammar element are we trying to match/expand?
 - What is the lookahead (next token of the input string)?

- At each step, apply one of three possible cases
 - If we’re trying to match a terminal
 - If the lookahead is that token, then succeed, advance the lookahead, and continue
 - If we’re trying to match a nonterminal
 - Pick which production to apply based on the lookahead
 - Otherwise fail with a parsing error
Parsing Example

E → id = n | { L }
L → E ; L | ε

• Here n is an integer and id is an identifier

▶ One input might be
 • { x = 3; { y = 4; }; }
 • This would get turned into a list of tokens
 { x = 3 ; { y = 4 ; } ; }
 • And we want to turn it into a parse tree
Parsing Example (cont.)

E → id = n | { L }
L → E ; L | ε

{x = 3 ; { y = 4 ; } ;}

lookahead
Recursive Descent Parsing (cont.)

- **Key step:** Choosing the right production
- **Two approaches**
 - **Backtracking**
 - Choose some production
 - If fails, try different production
 - Parse fails if all choices fail
 - **Predictive parsing (what we will do)**
 - Analyze grammar to find FIRST sets for productions
 - Compare with lookahead to decide which production to select
 - Parse fails if lookahead does not match FIRST
Selecting a Production

Motivating example

- If grammar $S \rightarrow xyz \mid abc$ and lookahead is x
 - Select $S \rightarrow xyz$ since 1st terminal in RHS matches x
- If grammar $S \rightarrow A \mid B$
 - $A \rightarrow x \mid y$
 - $B \rightarrow z$
 - If lookahead is x, select $S \rightarrow A$, since A can derive string beginning with x

In general

- Choose a production that can derive a sentential form beginning with the lookahead
- Need to know what terminal may be first in any sentential form derived from a nonterminal / production
First Sets

- **Definition**
 - \(\text{First}(\gamma) \), for any terminal or nonterminal \(\gamma \), is the set of initial terminals of all strings that \(\gamma \) may expand to.
 - We’ll use this to decide which production to apply.

- **Example:** Given grammar

 \[
 S \rightarrow A \mid B \\
 A \rightarrow x \mid y \\
 B \rightarrow z
 \]

 - \(\text{First}(A) = \{ x, y \} \) since \(\text{First}(x) = \{ x \} \), \(\text{First}(y) = \{ y \} \)
 - \(\text{First}(B) = \{ z \} \) since \(\text{First}(z) = \{ z \} \)

 - So: If we are parsing \(S \) and see \(x \) or \(y \), we choose \(S \rightarrow A \); if we see \(z \) we choose \(S \rightarrow B \).
Calculating First(γ)

- For a terminal \(a \)
 - \(\text{First}(a) = \{ a \} \)

- For a nonterminal \(N \)
 - If \(N \rightarrow \varepsilon \), then add \(\varepsilon \) to First(N)
 - If \(N \rightarrow \alpha_1 \alpha_2 \ldots \alpha_n \), then (note the \(\alpha_i \) are all the symbols on the right side of one single production):
 - Add First(\(\alpha_1 \alpha_2 \ldots \alpha_n \)) to First(N), where First(\(\alpha_1 \alpha_2 \ldots \alpha_n \)) is defined as
 - First(\(\alpha_1 \)) if \(\varepsilon \not\in \text{First}(\alpha_1) \)
 - Otherwise (First(\(\alpha_1 \)) – \(\varepsilon \)) \(\cup \) First(\(\alpha_2 \ldots \alpha_n \))
 - If \(\varepsilon \in \text{First}(\alpha_i) \) for all \(i, 1 \leq i \leq k \), then add \(\varepsilon \) to First(N)
First() Examples

E → id = n | { L }
L → E ; L | ε

First(id) = { id }
First(“=”)= { “=” }
First(n) = { n }
First(“{”)= { “{” }
First(“}”)= { “}” }
First(“;”)= { “;” }
First(E) = { id, “{” }
First(L) = { id, “{”, ε }

E → id = n | { L } | ε
L → E ; L

First(id) = { id }
First(“=”)= { “=” }
First(n) = { n }
First(“{”)= { “{” }
First(“}”)= { “}” }
First(“;”)= { “;” }
First(E) = { id, “{”, ε }
First(L) = { id, “{”, “;” }
Quiz #1

Given the following grammar:

\[
\begin{align*}
S & \rightarrow aAB \\
A & \rightarrow CBC \\
B & \rightarrow b \\
C & \rightarrow cC \mid \epsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #1

Given the following grammar:

\[
\begin{align*}
S &\rightarrow aAB \\
A &\rightarrow CBC \\
B &\rightarrow b \\
C &\rightarrow cC \mid \varepsilon
\end{align*}
\]

What is First(S)?

A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

```
S -> aAB
A -> CBC
B -> b
C -> cC | ε
```

What is First(B)?
A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #2

Given the following grammar:

\[
S \rightarrow aAB \\
A \rightarrow CBC \\
B \rightarrow b \\
C \rightarrow cC \mid \epsilon
\]

What is First(B)?
A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #3

Given the following grammar:

What is First(A)?
A. \{a\}
B. \{b, c\}
C. \{b\}
D. \{c\}
Quiz #3

Given the following grammar:

```
S  ->  aAB
A  ->  CBC
B  ->  b
C  ->  cC | ε
```

What is $\text{First}(A)$?

A. $\{a\}$
B. $\{b, c\}$
C. $\{b\}$
D. $\{c\}$

Note:
$\text{First}(B) = \{b\}$
$\text{First}(C) = \{c, ε\}$
Recursive Descent Parser Implementation

- For all terminals, use function `match_tok a`
 - If lookahead is `a` it consumes the lookahead by advancing the lookahead to the next token, and returns
 - Fails with a parse error if lookahead is not `a`

- For each nonterminal `N`, create a function `parse_N`
 - Called when we’re trying to parse a part of the input which corresponds to (or can be derived from) `N`
 - `parse_S` for the start symbol `S` begins the parse
match_tok in OCaml

let tok_list = ref [] (* list of parsed tokens *)

exception ParseError of string

let match_tok a =
 match !tok_list with
 (* checks lookahead; advances on match *)
 | (h::t) when a = h -> tok_list := t
 | _ -> raise (ParseError "bad match")

(* used by parse_X *)
let lookahead () =
 match !tok_list with
 [] -> raise (ParseError "no tokens")
 | (h::t) -> h
Parsing Nonterminals

The body of \texttt{parse_N} for a nonterminal \texttt{N} does the following

- Let \(N \rightarrow \beta_1 | \ldots | \beta_k\) be the productions of \texttt{N}
 - Here \(\beta_i\) is the entire right side of a production- a sequence of terminals and nonterminals
- Pick the production \(N \rightarrow \beta_i\) such that the lookahead is in \(\text{First}(\beta_i)\)
 - It must be that \(\text{First}(\beta_i) \cap \text{First}(\beta_j) = \emptyset\) for \(i \neq j\)
 - If there is no such production, but \(N \rightarrow \varepsilon\) then return
 - Otherwise fail with a parse error
- Suppose \(\beta_i = \alpha_1 \alpha_2 \ldots \alpha_n\). Then call \texttt{parse_\alpha_1()}; \ldots ; \texttt{parse_\alpha_n()} to match the expected right-hand side, and return
Example Parser

- Given grammar $S \rightarrow xyz \mid abc$
 - $\text{First}(xyz) = \{x\}$, $\text{First}(abc) = \{a\}$

- Parser

  ```ml
  let parse_S () =
    if lookahead () = "x" then (* $S \rightarrow xyz$ *)
      (match_tok "x";
       match_tok "y";
       match_tok "z")
    else if lookahead () = "a" then (* $S \rightarrow abc$ *)
      (match_tok "a";
       match_tok "b";
       match_tok "c")
    else raise (ParseError "parse_S")
  ```
Another Example Parser

- Given grammar $S \rightarrow A \mid B \quad A \rightarrow x \mid y \quad B \rightarrow z$
 - $\text{First}(A) = \{ x, y \}$, $\text{First}(B) = \{ z \}$

- Parser:
  ```ocaml
  let rec parse_S () =
    if lookahead () = "x" ||
      lookahead () = "y" then
      parse_A () (* S → A *)
    else if lookahead () = "z" then
      parse_B () (* S → B *)
    else raise (ParseError "parse_S")
  and parse_A () =
    if lookahead () = "x" then
      match_tok "x" (* A → x *)
    else if lookahead () = "y" then
      match_tok "y" (* A → y *)
    else raise (ParseError "parse_A")
  and parse_B () = ...
  ```

Syntax for \textit{mutually recursive} functions in OCaml – parse_S and parse_A and parse_B can each call the other.
Example

\[E \rightarrow id = n \mid \{ L \} \]
\[L \rightarrow E ; L \mid \varepsilon \]

First(\(E\)) = \{ id, "{" \}

Parser:

let rec parse_E() =
 if lookahead() = "id" then
 (* E → id = n *)
 (match_tok "id";
 match_tok ";
 match_tok "n")
 else if lookahead() = "{" then
 (* E → { L } *)
 (match_tok "{";
 parse_L();
 match_tok "}")
 else raise (ParseError "parse_A")

and parse_L() =
 if lookahead() = "id"
 || lookahead() = "{" then
 (* L → E ; L *)
 (parse_E());
 match_tok ";
 parse_L())
 else
 (* L → ε *)
 ()
Things to Notice

- If you draw the execution trace of the parser
 - You get the parse tree (we’ll consider ASTs later)

Examples

- Grammar

 S → xyz
 S → abc

- String “xyz”

 parse_S ()
 match_tok “x”
 match_tok “y”
 match_tok “z”

- Grammar

 S → A | B
 A → x | y
 B → z

- String “x”

 parse_S ()
 parse_A ()
 match_tok “x”
Things to Notice (cont.)

- This is a **predictive** parser
 - Because the lookahead determines exactly which production to use
- This parsing strategy may fail on some grammars
 - Production First sets overlap
 - Production First sets contain ε
 - Possible infinite recursion
- Does not mean grammar is not usable
 - Just means this parsing method not powerful enough
 - May be able to change grammar
Conflicting First Sets

Consider parsing the grammar $E \rightarrow ab \mid ac$

- $\text{First}(ab) = a$
- $\text{First}(ac) = a$

Parser fails whenever $A \rightarrow \alpha_1 \mid \alpha_2$ and

- $\text{First}(\alpha_1) \cap \text{First}(\alpha_2) \neq \epsilon$ or \emptyset

Solution

- Rewrite grammar using left factoring
Left Factoring Algorithm

- Given grammar
 - \(A \rightarrow x\alpha_1 \mid x\alpha_2 \mid \ldots \mid x\alpha_n \mid \beta \)

- Rewrite grammar as
 - \(A \rightarrow xL \mid \beta \)
 - \(L \rightarrow \alpha_1 \mid \alpha_2 \mid \ldots \mid \alpha_n \)

- Repeat as necessary

- Examples
 - \(S \rightarrow ab \mid ac \quad \Rightarrow \quad S \rightarrow aL \quad L \rightarrow b \mid c \)
 - \(S \rightarrow abcA \mid abB \mid a \quad \Rightarrow \quad S \rightarrow aL \quad L \rightarrow bcA \mid bB \mid \varepsilon \)
 - \(L \rightarrow bcA \mid bB \mid \varepsilon \quad \Rightarrow \quad L \rightarrow bL' \mid \varepsilon \quad L' \rightarrow cA \mid B \)
Alternative Approach

- Change structure of parser
 - First match common prefix of productions
 - Then use lookahead to chose between productions

Example
- Consider parsing the grammar $E \rightarrow a+b \mid a*b \mid a$

```plaintext
let parse_E () =
  match_tok "a"; (* common prefix *)
  if lookahead () = "+" then (* E \rightarrow a+b *)
    (match_tok "+";
     match_tok "b")
  else if lookahead () = "*" then (* E \rightarrow a*b *)
    (match_tok "*";
     match_tok "b")
  else () (* E \rightarrow a *)
```
Left Recursion

- Consider grammar $S \rightarrow Sa \mid \varepsilon$
 - Try writing parser

```ocaml
let rec parse_S () =
  if lookahead () = "a" then
    (parse_S ();
     match_tok "a") (* S → Sa *)
  else ()
```

- Body of `parse_S ()` has an infinite loop!
 - Infinite loop occurs in grammar with left recursion
Right Recursion

- Consider grammar $S \rightarrow aS \mid \varepsilon$

 - Try writing parser

  ```ml
  let rec parse_S () =
    if lookahead () = "a" then
      (match_tok "a";
       parse_S ());
    else ()
  (* S → aS *)
  
  - Will `parse_S()` infinite loop?
    - Invoking `match_tok` will advance `lookahead`, eventually stop
  
  - Top down parsers handles grammar w/ right recursion
  ```
Algorithm To Eliminate Left Recursion

- Given grammar
 - \(A \rightarrow A\alpha_1 \mid A\alpha_2 \mid \ldots \mid A\alpha_n \mid \beta \)
 - \(\beta \) must exist or no derivation will yield a string

- Rewrite grammar as (repeat as needed)
 - \(A \rightarrow \beta L \)
 - \(L \rightarrow \alpha_1 L \mid \alpha_2 L \mid \ldots \mid \alpha_n L \mid \epsilon \)

- Replaces left recursion with right recursion

- Examples
 - \(S \rightarrow Sa \mid \epsilon \) \(\Rightarrow S \rightarrow L \quad L \rightarrow aL \mid \epsilon \)
 - \(S \rightarrow Sa \mid Sb \mid c \) \(\Rightarrow S \rightarrow cL \quad L \rightarrow aL \mid bL \mid \epsilon \)
Quiz #4

What Does the following code parse?

```ocaml
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #4

What Does the following code parse?

```ocaml
let parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     match_tok "x";
     match_tok "y")
  else if lookahead () = "q" then
    match_tok "q"
  else
    raise (ParseError "parse_S")
```

A. S -> axyq
B. S -> a | q
C. S -> aaxy | qq
D. S -> axy | q
Quiz #5

What Does the following code parse?

```
let rec parse_S () =
  if lookahead () = "a" then
    (match_tok "a";
     parse_S ())
  else if lookahead () = "q" then
    (match_tok "q";
     match_tok "p")
  else
    raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Quiz #5

What Does the following code parse?

```ocaml
let rec parse_S () =
    if lookahead () = "a" then
        (match_tok "a";
         parse_S ()
        )
    else if lookahead () = "q" then
        (match_tok "q";
         match_tok "p"
        )
    else
        raise (ParseError "parse_S")
```

A. S -> aS | qp
B. S -> a | S | qp
C. S -> aqSp
D. S -> a | q
Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B -> bC
C -> ε | Cc

A. Yes
B. No
 (due to left recursion)
What’s Wrong With Parse Trees?

- Parse trees contain too much information
 - Example
 - Parentheses
 - Extra nonterminals for precedence
 - This extra stuff is needed for parsing

- But when we want to reason about languages
 - Extra information gets in the way (too much detail)
Abstract Syntax Trees (ASTs)

- An abstract syntax tree is a more compact, abstract representation of a parse tree, with only the essential parts.

```
      E
     /|
    / E
   /  E
  / c       (E)
 /     |
b       +
        /|
        / d
```

```
    *
   /|
  c  +
  / |
 b  d
```

parse tree

AST
Abstract Syntax Trees (cont.)

Intuitively, ASTs correspond to the data structure you’d use to represent strings in the language

- Note that grammars describe trees
 - So do OCaml datatypes, as we have seen already
- $E \rightarrow a \mid b \mid c \mid E+E \mid E-E \mid E*E \mid (E)$

```
  *  
 /  \  
/    
+     
b    d
```

$E \rightarrow a | b | c | E+E | E-E | E*E | (E)$
Producing an AST

To produce an AST, we can modify the `parse()` functions to construct the AST along the way

- `match_tok a` returns an AST node (leaf) for `a`
- `parse_A` returns an AST node for `A`
 - AST nodes for RHS of production become children of LHS node

Example

- `S → aA`

  ```ml
  let rec parse_S () =
  if lookahead () = "a" then
    let n1 = match_tok "a" in
    let n2 = parse_A () in
    Node(n1,n2)
  else raise ParseError "parse_S"
  ```

 \[
 S \quad / \quad \backslash \\
 \quad a \quad \quad \quad \quad A \\
 \]
The Compilation Process

Lexing → Parsing → AST → Intermediate Code Generation → Optimization

- Lexing: regexps, DFAs
- Parsing: CFGs, PDAs
- AST: (may not actually be constructed)