CMSC 330: Organization of
Programming Languages

Parsing

CMSC 330 Fall 2019

Recall: Front End Scanner and Parser

Scanner

Front End

Token
Stream

>

Parser

>

« Scanner / lexer / tokenizer converts program source
into tokens (keywords, variable names, operators,

numbers, etc.) with regular expressions

« Parser converts tokens into an AST (abstract syntax
tree) based on a context free grammar

CMSC 330 Fall 2019

Scanning (“tokenizing”)

» Converts textual input into a stream of tokens
* These are the terminals in the parser's CFG

* Example tokens are keywords, identifiers, numbers,
punctuation, etc.

» Tokens determined with regular expressions
* |dentifiers match regexp [a-zA-Z][a-zA-Z0-9 |*
* Non-negative integers match [0-9]+
* Efc.

» Scanner typically ignores/eliminates whitespace

CMSC 330 Fall 2019

A Scanner in OCaml

type token
Tok Num of char

| Tok Sum

| Tok END

let tokenize (s:string)
(* returns token list ¥*)

tokenize “14+2” =
[Tok Num '1l';
Tok Sum;
Tok Num '2';
Tok END]

let re num
let re_add
let tokenize

Str.regexp "[0-9]"
Str.regexp "+"
str

(* single digit *)

in
to

Tok_Sum:: (tok (pos+l) s)
else
raise (IllegalExpression "tokenize")

k 0 str

CMSC 330 Fall 2019

let rec tok pos s = Uses Str

if pos >= String.length s then .

[Tok_END] Ilbrary
else

if (Str.string match re num s pos) then mOdUIe

let token = Str.matched string s in for
(Tok_Num token. [0]):: (tok (pos+l) s)
else if (Str.string match re add s pos) then regeXpS

Implementing Parsers

» Many efficient techniques for parsing
e LL(k), SLR(k), LR(k), LALR(K)...
 Take CMSC 430 for more details

» One simple technique: recursive descent parsing
* This is a top-down parsing algorithm
» Other algorithms are bottom-up

CMSC 330 Fall 2019

Top-Down Parsing (Intuition)

E—id=n|{L}
L—>E;L|E

(Assume: idis
variable name, n is
integer)

Show parse tree for
{x=3;{y=4:};}

CMSC 330 Fall 2019 6

Bottom-up Parsing (Intuition)

Eid=n|{L)
L—)E;Llﬁ

Show parse tree for
{x=3:;{y=4:};}

Note that final trees
constructed are same
as for top-down; only
order in which nodes
are added to tree is
different

CMSC 330 Fall 2019 7

BU Example: Shift-Reduce Parsing

» Replaces RHS of production with LHS
(nonterminal)

» Example grammar
e S—aA A—-Bc,B—b
» Example parse
e abc>aBc=>aA=>3S
* Derivation happens in reverse
» Complicated to use; requires tool support
* Bison, yacc produce shift-reduce parsers from CFGs

CMSC 330 Fall 2019

Tradeoffs

» Recursive descent parsers

* Easy to write

» The formal definition is a little clunky, but if you follow the
code then it's almost what you might have done if you
weren't told about grammars formally

* Fast
» Can be implemented with a simple table

» Shift-reduce parsers handle more grammars
* Error messages may be confusing

» Most languages use hacked parsers (!)
e Strange combination of the two

CMSC 330 Fall 2019

Recursive Descent Parsing

» Goal
* Can we “parse” a string — does it match our grammar?

» We will talk about constructing an AST later
» Approach: Perform parse
* Replace each non-terminal A by the rhs of a production

A-> rhs
* And/or match each terminal against token in input

e Repeat until input consumed, or failure

CMSC 330 Fall 2019 10

Recursive Descent Parsing (cont.)

» At each step, we'll keep track of two facts

* What grammar element are we trying to
match/expand?

* What is the lookahead (next token of the input
string)?

» At each step, apply one of three possible cases

* |f we're trying to match a terminal

> If the lookahead is that token, then succeed, advance the
lookahead, and continue

* |f we’ re trying to match a nonterminal
» Pick which production to apply based on the lookahead

* Otherwise fail with a parsing error
CMSC 330 Fall 2019 11

Parsing Example

E—-id=n|{L}
L—oE;L]|¢

* Here nis an integer and id is an identifier

» One input might be
* {x=3{y=4}}
* This would get turned into a list of tokens
{x=3;{y=4:1},;}
* And we want to turn it into a parse tree

CMSC 330 Fall 2019

12

Parsing Example (cont.)

Eid=n|{L)} A

L>E;L|¢ {E/k\L}
{IX=3;{y=4;}} id/=/\n .
NRERIRER RIS (3)/LN\
lookahead E/N
P

CMSC 330 Fall 2019

13

Recursive Descent Parsing (cont.)

» Key step: Choosing the right production

» WO approaches
* Backtracking

» Choose some production
» If fails, try different production
» Parse fails if all choices falil

* Predictive parsing (what we will do)
» Analyze grammar to find FIRST sets for productions
» Compare with lookahead to decide which production to select
» Parse fails if lookahead does not match FIRST

CMSC 330 Fall 2019 14

Selecting a Production

» Motivating example
* |[f grammar S — xyz | abc and lookahead is x
» Select S — xyz since 1st terminal in RHS matches x
° fgrammarS—-A|B A—-x|yB-—oz

> If lookahead is x, select S — A, since A can derive string
beginning with x

» In general

* Choose a production that can derive a sentential form
beginning with the lookahead

* Need to know what terminal may be first in any
sentential form derived from a nonterminal / production

CMSC 330 Fall 2019 15

First Sets

» Definition

* First(y), for any terminal or nonterminal vy, is the set of
initial terminals of all strings that y may expand to

* We'll use this to decide which production to apply
» Example: Given grammar

S—>A|B
A—-Xx |y
B—-7Z

* First(A) ={x,y}since First(x) ={x }, First(y) ={vy }
* First(B) ={z} since First(z) ={z}
» So: If we are parsing S and see x ory, we
choose S — A, if we see z we choose S — B

CMSC 330 Fall 2019 16

Calculating First(y)

» For aterminal a
* First(a)={a}
» For a nonterminal N

* IfN — ¢, then add € to First(N)

* IfN—aq 0, ... a, then (note the a; are all the
symbols on the right side of one single production):

» Add First(a4a, ... a,) to First(N), where First(a; a, ... a,) is
defined as

- First(a,) if € ¢ First(ay)
« Otherwise (First(a4) — €) U First(a, ... a,)
> If € € First(a;) for all i, 1 <i <k, then add € to First(N)

CMSC 330 Fall 2019 17

First() Examples

E—id=n|{L}
L—->E;L|¢
~irst(id) = {id }
First("=") = { "="}
~irst(in) ={ n}
Cirst("{")={"{" }
First(')")={"}")
Cirst(h;")={ %" }
-irst(BE) = {id, "{" }
-irst(L) ={id, "{", €}

CMSC 330 Fall 2019

Eid=n|{L}|e
L>E:L

First(id) ={id }
First("=") ={"="}
First(in) ={n}
First("{")={"("}
First('}")={"}"}
First(;")={ ";")
First(E) = {id, "{", €}
First(L) ={id, "{", ";" }

Quiz #1

Given the following grammar:

What is First(S)?
A.{a}

B. {b,c}

C. {b}

D. {c}

CMSC 330 Fall 2019

S =>
A —>
B —->
C =>

aAB
CBC

cC

19

Quiz #1

Given the following grammar:

S —> aAB
A —-> CBC
B -> D
What is First(S)? C => cC
A. {a}
B. {b,c}
C. {b}

D. {c}

CMSC 330 Fall 2019

20

Quiz #2

Given the following grammar:

What is First(B)?
A. {a}

B. {b,c}

C. {b}

D. {c}

CMSC 330 Fall 2019

S =>
A —>
B —->
C =>

aAB
CBC

cC

21

Quiz #2

Given the following grammar:

What is First(B)?
A. {a}

B. {b,c}

C. {b}

D. {c}

CMSC 330 Fall 2019

S =>
A —>
B —->
C =>

aAB
CBC

cC

22

Quiz #3

Given the following grammar:

What is First(A)?
A. {a}

B. {b,c}

C. {b}

D. {c}

CMSC 330 Fall 2019

S =>
A —>
B —->
C =>

aAB
CBC

cC

23

Quiz #3

Given the following grammar:

S —> aAB
A —-> CBC
B -—> Db
What is First(A)? C => cC | ¢
A. {a}
B. {b,c} Note:
C. {b} First(B) = {b}

D. {c} First(C) = {c, e}

CMSC 330 Fall 2019

Recursive Descent Parser Implementation

» For all terminals, use function match_tok a

* |f lookahead is a it consumes the lookahead by
advancing the lookahead to the next token, and returns

* Fails with a parse error if lookahead is not a

» For each nonterminal N, create a function parse N

* Called when we're trying to parse a part of the input
which corresponds to (or can be derived from) N

* parse S for the start symbol S begins the parse

CMSC 330 Fall 2019 25

match tok in OCami

let tok list = ref [] (* list of parsed tokens *)
exception ParseError of string

let match tok a =
match !'tok list with
(* checks lookahead; advances on match *)
| (h::t) when a = h -> tok list := t
| _ -> raise (ParseError "bad match")
(* used by parse X *)
let lookahead () =
match !'tok list with
[] -—> raise (ParseError "no tokens")
| (h::t) -> h

CMSC 330 Fall 2019

26

Parsing Nonterminals

» The body of parse N for a nonterminal N does
the following

* LetN — 34| ... | Bx be the productions of N

» Here B;is the entire right side of a production- a sequence of
terminals and nonterminals
* Pick the production N — [3; such that the lookahead is
in First(f;)
> It must be that First(B;) N First(3;) = & fori# |
> If there is no such production, but N — € then return
» Otherwise fail with a parse error

* Suppose B;=0a4 0, ... a,. Then call parse_ay(); ... ;
parse a,() to match the expected right-hand side,

and return
CMSC 330 Fall 2019 27

Example Parser

» Glven grammar S — xyz | abc
* First(xyz) ={x}, First(abc)={a}

» Parser
let parse S () =
if lookahead () = "x" then (* S - xyz *)
(match tok "x";
match tok "y";
match tok "z")
else if lookahead () = "a" then (* S - abc ¥*)
(match tok "a";
match tok "b";
match tok "c")

else raise (ParseError "parse S")

CMSC 330 Fall 2019

28

Another Example Parser

» GivengrammarS - A|B A—-x|y B—oz

First(A)={x,y}, First(B)={z}
» Parser: letparse S () =

ookahead () = "x" ||
lookahead () = "y" then
Syntax for parse A () (* S - A *)
mutual_/y else if lookahead () = "z" then
e, _pamses 0 (s 5
OCam| — else raise (ParseError "parse S")
parse S and parse_A () =
parse A and 1f lookahead () = "x" then
parse:B can match tok "x" (* A - x ¥)
each call the else if lookahead () = "y" then
other match tok "y" (* A - y *)

else raise (ParseError

parse_B () = ..

CMSC 330 Fall 2019

"parse A")

29

Example

E—-id=n|{L}
L—oE;L]|¢

Parser:

let rec parse E () =

if lookahead () = "id" then
(* E - id = n *)
(match tok "id";

match tok "=";
match tok "n"
else if lookahead () = "{" then

(*E - { L} *)
(match tok "{";
parse L ();

match tok "}")

else raise (ParseError '"parse A")

CMSC 330 Fall 2019

First(E) = { id, "{" }

and parse L () =

if lookahead () =

| | lookahead () =
(*L - E ; L ¥*)
(parse E ();
match tok ";";
parse L ())

else
(*L—>€*)

()

"id"
" { " then

30

Things to Notice

» If you draw the execution trace of the parser
* You get the parse tree (we’'ll consider ASTs later)

» Examples
e Grammar e Grammar
S > XyZ S-S A | B
S — abc A—-x |y
» String “xyz” B—2z
parse_S () S String “x” S
match_tok “x” /|\ parse_S () |
match_tok “y” X y Z parse_A () A
match_tok “z” match_tok “x” |
b

CMSC 330 Fall 2019 31

Things to Notice (cont.)

» This is a predictive parser

* Because the lookahead determines exactly which
production to use

» This parsing strategy may fail on some grammars
* Production First sets overlap
* Production First sets contain €
* Possible infinite recursion

» Does not mean grammar is not usable
* Just means this parsing method not powerful enough
* May be able to change grammar

CMSC 330 Fall 2019 32

Conflicting First Sets

» Consider parsing the grammar E — ab | ac

* First(ab) = a Parser cannot choose between
* First(ac) =a RHS based on lookahead!

» Parser fails whenever A — a, | a, and
* First(a4) N First(a,) =€ or @

» Solution
* Rewrite grammar using left factoring

CMSC 330 Fall 2019 33

Left Factoring Algorithm

» Given grammar

* A—Xxay|xa|...|xa,| B
» Rewrite grammar as

* A—xXxL|P

c Loa|a]...|a,
» Repeat as necessary

» Examples

e S—ab|ac - S — alL
* S—abcA|abB|a =S —alL
* L —>bcA|bB|¢ -L—blL" |¢

CMSC 330 Fall 2019

L—>b|C
L—>bcA|bB|¢
L - cA|B

34

Alternative Approach

» Change structure of parser
* First match common prefix of productions
* Then use lookahead to chose between productions

» Example

* Consider parsing the grammar E — a+b |a*b | a
let parse E () =
match tok "a"; (* common prefix ¥)

if lookahead () = "+" then (* E - a+b *)
(match tok "+";
match tok "b")

else if lookahead () = "*" then (* E - a*b ¥*)
(match tok "*";
match tok "b")

else () (* E - a *)

CMSC 330 Fall 2019

35

Left Recursion

» Consider grammar S — Sa | €
* Try writing parser

let rec parse S ()
i1f lookahead ()
(parse_S () ;
match tok “a”) (* S - Sa *)
else ()

“a” then

* Body of parse_S () has an infinite loop!
» Infinite loop occurs in grammar with left recursion

CMSC 330 Fall 2019

36

Right Recursion

» Consider grammar S — aS | € Again, First(aS) = a
* Try writing parser

let rec parse S ()

if lookahead () “a” then
(match tok ™“a”;
parse S ()) (* S - aS *)

else ()

* Will parse_S() infinite loop?
» Invoking match_tok will advance lookahead, eventually stop
* Top down parsers handles grammar w/ right recursion

CMSC 330 Fall 2019 37

Algorithm To Eliminate Left Recursion

» Given grammar
o A—)AG1 |AG2| |AGn| B

» B must exist or no derivation will yield a string

» Rewrite grammar as (repeat as needed)

c A— L

e L—oaolL|a,L]|...]a,L]|€
» Replaces left recursion with right recursion
» Examples

e S—Salc¢ >SS —> L L—al|¢

- S>Sa|Sb|c ~S—cL L—oall|bL]|e

CMSC 330 Fall 2019

38

Quiz #4

» What Does the following code parse?

let parse S () =
if lookahead () = “a” then

(match tok "a"; A S-> axyq
match tok "x"; B S->g | 9
match tok "y")
else if lookahead () = “g” then C. S-> aaxy | dqq9
match tok "q” D. S-> axy | d
else

raise (ParseError '"parse S")

CMSC 330 Fall 2019 39

Quiz #4

» What Does the following code parse?

let parse S () =
if lookahead () = “a” then

(match tok "a"; A S-> axyq
match tok "x" ; B S->g | 9
match tok "y")
else if lookahead () = “g” then C. S-> aaxy | dqq9
match tok "q” D. S->axy|q
else

raise (ParseError '"parse S")

CMSC 330 Fall 2019 40

Quiz #5

» What Does the following code parse?

let rec parse S () =

if lookahead () = “a” then
(match tok "a";
parse S ())

else if lookahead () = “q” then
(match tok "q”;
match tok "p”)

else
raise (ParseError "parse S")

CMSC 330 Fall 2019

A. S->aS|qgp
B.S->a|S|gp
C. S->aqSp

D. S->a|g

Quiz #5

» What Does the following code parse?

let rec parse S () =

if lookahead () = “a” then
(match tok "a";
parse S ())

else if lookahead () = “q” then
(match tok "q”;
match tok "p”)

else
raise (ParseError "parse S")

CMSC 330 Fall 2019

A. S->aS|gp
B.S->a|S|gp
C. S->aqSp
D. S->a|g

Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B ->bC
C->¢|Cc

A. Yes
B. No

CMSC 330 Fall 2019

Quiz #6

Can recursive descent parse this grammar?

S -> aBa
B ->bC
C->¢|Cc

A. Yes
B. No

(due to left recursion)

CMSC 330 Fall 2019

What's Wrong With Parse Trees?

» Parse trees contain too much information

 Example
» Parentheses
» Extra nonterminals for precedence

* This extra stuff is needed for parsing

» But when we want to reason about languages
e Extra information gets in the way (too much detail)

CMSC 330 Fall 2019 45

Abstract Syntax Trees (ASTs)

» An abstract syntax tree is a more compact,
abstract representation of a parse tree, with only
the essential parts

E/T\E c/*\+
b/ \d

AN
parse / \ AST

tree E + E

CMSC 330 Fall 2019 46

Abstract Syntax Trees (cont.)

» Intuitively, ASTs correspond to the data structure
you'd use to represent strings in the language

* Note that grammars describe trees
» So do OCaml datatypes, as we have seen already

- E>a|b|c|E+E|E-E|E*E| (E)
/" \
C +
/ \
b d

CMSC 330 Fall 2019 47

Producing an AST

» To produce an AST, we can modify the parse()
functions to construct the AST along the way

* match_tok a returns an AST node (leaf) for a

e parse A returns an AST node for A
»> AST nodes for RHS of production become children of LHS node

» Example
let rec parse_S () =

* S—ahA if lookahead () = “a” then S
let n1 = match_tok “a” in / \
let n2 = parse_A() in
Node(n1,n2) a A

else raise ParseError “parse_S” |

CMSC 330 Fall 2019 48

The Compilation Process

source
program

Compiler target

-~
-—
-—
-—
-—
-
-~
-—
-—
-~
-—
-—
-—
-—
-—
-—
-~
-—
-—
-—
-—
-—
-~
-~
-—
-—
=~ -

Lexing —»| Parsing

program

regexps CFGs
DFAs PDAs

CMSC 330 Fall 2019

Intermediate
Code
Generation

Optimization

(may not actually
be constructed)

49

